Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting
- URL: http://arxiv.org/abs/2411.03098v1
- Date: Tue, 05 Nov 2024 13:44:25 GMT
- Title: Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting
- Authors: Adrian B. Chłopowiec, Adam R. Chłopowiec, Krzysztof Galus, Wojciech Cebula, Martin Tabakov,
- Abstract summary: We propose and evaluate two local lesion generation approaches to address the challenge of augmenting small medical image datasets.
The first approach employs the Poisson Image Editing algorithm, a classical image processing technique, to create realistic image composites.
The second approach introduces a novel generative method, leveraging a fine-tuned Image Inpainting GAN to synthesize realistic lesions.
- Score: 0.0
- License:
- Abstract: Limited medical imaging datasets challenge deep learning models by increasing risks of overfitting and reduced generalization, particularly in Generative Adversarial Networks (GANs), where discriminators may overfit, leading to training divergence. This constraint also impairs classification models trained on small datasets. Generative Data Augmentation (GDA) addresses this by expanding training datasets with synthetic data, although it requires training a generative model. We propose and evaluate two local lesion generation approaches to address the challenge of augmenting small medical image datasets. The first approach employs the Poisson Image Editing algorithm, a classical image processing technique, to create realistic image composites that outperform current state-of-the-art methods. The second approach introduces a novel generative method, leveraging a fine-tuned Image Inpainting GAN to synthesize realistic lesions within specified regions of real training images. A comprehensive comparison of the two proposed methods demonstrates that effective local lesion generation in a data-constrained setting allows for reaching new state-of-the-art results in capsule endoscopy lesion classification. Combination of our techniques achieves a macro F1-score of 33.07%, surpassing the previous best result by 7.84 percentage points (p.p.) on the highly imbalanced Kvasir Capsule Dataset, a benchmark for capsule endoscopy. To the best of our knowledge, this work is the first to apply a fine-tuned Image Inpainting GAN for GDA in medical imaging, demonstrating that an image-conditional GAN can be adapted effectively to limited datasets to generate high-quality examples, facilitating effective data augmentation. Additionally, we show that combining this GAN-based approach with classical image processing techniques further enhances the results.
Related papers
- Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - Text-guided Foundation Model Adaptation for Long-Tailed Medical Image Classification [4.6651139122498]
In medical contexts, the imbalanced data distribution in long-tailed datasets, due to scarce labels for rare diseases, greatly impairs the diagnostic accuracy of deep learning models.
Recent multimodal text-image supervised foundation models offer new solutions to data scarcity through effective representation learning.
We propose a novel Text-guided Foundation model Adaptation for Long-Tailed medical image classification (TFA-LT)
Our method achieves an accuracy improvement of up to 27.1%, highlighting the substantial potential of foundation model adaptation in this area.
arXiv Detail & Related papers (2024-08-27T04:18:18Z) - DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification [3.0100246737240877]
We show that synthetic colonoscopy images generated by Generative Adversarial Network (GAN) inversion can be used as training data to improve the lesion classification performance of deep learning models.
This approach inverts pairs of images with the same label to a semantically rich & disentangled latent space and manipulates latent representations to produce new synthetic images with the same label.
We also generate realistic-looking synthetic lesion images by interpolating between original training images to increase the variety of lesion shapes in the training dataset.
arXiv Detail & Related papers (2022-05-04T23:15:45Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.