Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation
- URL: http://arxiv.org/abs/2311.06057v1
- Date: Fri, 10 Nov 2023 13:42:21 GMT
- Title: Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation
- Authors: \"Umit Mert \c{C}a\u{g}lar, Alperen \.Inci, O\u{g}uz Hano\u{g}lu,
G\"orkem Polat, Alptekin Temizel
- Abstract summary: Deep learning based methods are effective in automated analysis of these images and can potentially be used to aid medical doctors.
In this paper, we propose a active learning based generative augmentation method.
The method involves generating a large number of synthetic samples by training using a small dataset consisting of real endoscopic images.
- Score: 2.5241576779308335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Endoscopic imaging is commonly used to diagnose Ulcerative Colitis (UC) and
classify its severity. It has been shown that deep learning based methods are
effective in automated analysis of these images and can potentially be used to
aid medical doctors. Unleashing the full potential of these methods depends on
the availability of large amount of labeled images; however, obtaining and
labeling these images are quite challenging. In this paper, we propose a active
learning based generative augmentation method. The method involves generating a
large number of synthetic samples by training using a small dataset consisting
of real endoscopic images. The resulting data pool is narrowed down by using
active learning methods to select the most informative samples, which are then
used to train a classifier. We demonstrate the effectiveness of our method
through experiments on a publicly available endoscopic image dataset. The
results show that using synthesized samples in conjunction with active learning
leads to improved classification performance compared to using only the
original labeled examples and the baseline classification performance of 68.1%
increases to 74.5% in terms of Quadratic Weighted Kappa (QWK) Score. Another
observation is that, attaining equivalent performance using only real data
necessitated three times higher number of images.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification [3.0100246737240877]
We show that synthetic colonoscopy images generated by Generative Adversarial Network (GAN) inversion can be used as training data to improve the lesion classification performance of deep learning models.
This approach inverts pairs of images with the same label to a semantically rich & disentangled latent space and manipulates latent representations to produce new synthetic images with the same label.
We also generate realistic-looking synthetic lesion images by interpolating between original training images to increase the variety of lesion shapes in the training dataset.
arXiv Detail & Related papers (2022-05-04T23:15:45Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
We propose a novel medical image classification algorithm called Weakly-Supervised Generative Adversarial Networks (WSGAN)
WSGAN only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set.
We show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data.
arXiv Detail & Related papers (2021-11-29T15:38:48Z) - Enhanced Transfer Learning Through Medical Imaging and Patient
Demographic Data Fusion [0.0]
We examine the performance enhancement in classification of medical imaging data when image features are combined with associated non-image data.
We utilise transfer learning with networks pretrained on ImageNet used directly as feature extractors and fine tuned on the target domain.
arXiv Detail & Related papers (2021-11-29T09:11:52Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Self supervised contrastive learning for digital histopathology [0.0]
We use a contrastive self-supervised learning method called SimCLR that achieved state-of-the-art results on natural-scene images.
We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features.
Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks.
arXiv Detail & Related papers (2020-11-27T19:18:45Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.