Lagrangian PINNs: A causality-conforming solution to failure modes of
physics-informed neural networks
- URL: http://arxiv.org/abs/2205.02902v1
- Date: Thu, 5 May 2022 19:48:05 GMT
- Title: Lagrangian PINNs: A causality-conforming solution to failure modes of
physics-informed neural networks
- Authors: Rambod Mojgani and Maciej Balajewicz and Pedram Hassanzadeh
- Abstract summary: Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems.
We show that the challenge of training persists even when the boundary conditions are strictly enforced.
We propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution.
- Score: 5.8010446129208155
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-informed neural networks (PINNs) leverage neural-networks to find the
solutions of partial differential equation (PDE)-constrained optimization
problems with initial conditions and boundary conditions as soft constraints.
These soft constraints are often considered to be the sources of the complexity
in the training phase of PINNs. Here, we demonstrate that the challenge of
training (i) persists even when the boundary conditions are strictly enforced,
and (ii) is closely related to the Kolmogorov n-width associated with problems
demonstrating transport, convection, traveling waves, or moving fronts. Given
this realization, we describe the mechanism underlying the training schemes
such as those used in eXtended PINNs (XPINN), curriculum regularization, and
sequence-to-sequence learning. For an important category of PDEs, i.e.,
governed by non-linear convection-diffusion equation, we propose reformulating
PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed
solution. A parallel architecture with two branches is proposed. One branch
solves for the state variables on the characteristics, and the second branch
solves for the low-dimensional characteristics curves. The proposed
architecture conforms to the causality innate to the convection, and leverages
the direction of travel of the information in the domain. Finally, we
demonstrate that the loss landscapes of LPINNs are less sensitive to the
so-called "complexity" of the problems, compared to those in the traditional
PINNs in the Eulerian framework.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - A unified scalable framework for causal sweeping strategies for
Physics-Informed Neural Networks (PINNs) and their temporal decompositions [22.514769448363754]
Training challenges in PINNs and XPINNs for time-dependent PDEs are discussed.
We propose a new stacked-decomposition method that bridges the gap between PINNs and XPINNs.
We also formulate a new time-sweeping collocation point algorithm inspired by the previous PINNs causality.
arXiv Detail & Related papers (2023-02-28T01:19:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.