Design Target Achievement Index: A Differentiable Metric to Enhance Deep
Generative Models in Multi-Objective Inverse Design
- URL: http://arxiv.org/abs/2205.03005v1
- Date: Fri, 6 May 2022 04:14:34 GMT
- Title: Design Target Achievement Index: A Differentiable Metric to Enhance Deep
Generative Models in Multi-Objective Inverse Design
- Authors: Lyle Regenwetter, Faez Ahmed
- Abstract summary: Design Target Achievement Index (DTAI) is a differentiable, tunable metric that scores a design's ability to achieve designer-specified minimum performance targets.
We apply DTAI to a Performance-Augmented Diverse GAN (PaDGAN) and demonstrate superior generative performance compared to a set of baseline Deep Generative Models.
- Score: 4.091593765662773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Generative Machine Learning Models have been growing in popularity
across the design community thanks to their ability to learn and mimic complex
data distributions. While early works are promising, further advancement will
depend on addressing several critical considerations such as design quality,
feasibility, novelty, and targeted inverse design. We propose the Design Target
Achievement Index (DTAI), a differentiable, tunable metric that scores a
design's ability to achieve designer-specified minimum performance targets. We
demonstrate that DTAI can drastically improve the performance of generated
designs when directly used as a training loss in Deep Generative Models. We
apply the DTAI loss to a Performance-Augmented Diverse GAN (PaDGAN) and
demonstrate superior generative performance compared to a set of baseline Deep
Generative Models including a Multi-Objective PaDGAN and specialized tabular
generation algorithms like the Conditional Tabular GAN (CTGAN). We further
enhance PaDGAN with an auxiliary feasibility classifier to encourage feasible
designs. To evaluate methods, we propose a comprehensive set of evaluation
metrics for generative methods that focus on feasibility, diversity, and
satisfaction of design performance targets. Methods are tested on a challenging
benchmarking problem: the FRAMED bicycle frame design dataset featuring
mixed-datatype parametric data, heavily skewed and multimodal distributions,
and ten competing performance objectives.
Related papers
- Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
arXiv Detail & Related papers (2024-06-17T16:03:17Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - Generative Design through Quality-Diversity Data Synthesis and Language Models [5.196236145367301]
Two fundamental challenges face generative models in engineering applications: the acquisition of high-performing, diverse datasets, and the adherence to precise constraints in generated designs.
We propose a novel approach combining optimization, constraint satisfaction, and language models to tackle these challenges in architectural design.
arXiv Detail & Related papers (2024-05-16T11:30:08Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Towards Goal, Feasibility, and Diversity-Oriented Deep Generative Models
in Design [4.091593765662773]
We present the first Deep Generative Model that simultaneously optimize for performance, feasibility, diversity, and target achievement.
Methods are tested on a challenging multi-objective bicycle frame design problem with skewed, multimodal data of different datatypes.
arXiv Detail & Related papers (2022-06-14T20:57:23Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - MO-PaDGAN: Reparameterizing Engineering Designs for Augmented
Multi-objective Optimization [13.866787416457454]
Multi-objective optimization is key to solving many Engineering Design problems.
Deep generative models can learn compact design representations.
Mo-PaDGAN adds a Determinantal Point Processes based loss function to the generative adversarial network.
arXiv Detail & Related papers (2020-09-15T13:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.