A Reward-Directed Diffusion Framework for Generative Design Optimization
- URL: http://arxiv.org/abs/2508.01509v1
- Date: Sat, 02 Aug 2025 22:19:02 GMT
- Title: A Reward-Directed Diffusion Framework for Generative Design Optimization
- Authors: Hadi Keramati, Patrick Kirchen, Mohammed Hannan, Rajeev K. Jaiman,
- Abstract summary: This study builds on a fine-tuned diffusion model and reward-directed sampling to generate high-performance engineering designs.<n>The proposed framework generates samples that extend beyond the training data distribution, resulting in a greater 25 percent reduction in resistance for ship design and over 10 percent improvement in the lift-to-drag ratio for the 2D airfoil design.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a generative optimization framework that builds on a fine-tuned diffusion model and reward-directed sampling to generate high-performance engineering designs. The framework adopts a parametric representation of the design geometry and produces new parameter sets corresponding to designs with enhanced performance metrics. A key advantage of the reward-directed approach is its suitability for scenarios in which performance metrics rely on costly engineering simulations or surrogate models (e.g. graph-based, ensemble models, or tree-based) are non-differentiable or prohibitively expensive to differentiate. This work introduces the iterative use of a soft value function within a Markov decision process framework to achieve reward-guided decoding in the diffusion model. By incorporating soft-value guidance during both the training and inference phases, the proposed approach reduces computational and memory costs to achieve high-reward designs, even beyond the training data. Empirical results indicate that this iterative reward-directed method substantially improves the ability of the diffusion models to generate samples with reduced resistance in 3D ship hull design and enhanced hydrodynamic performance in 2D airfoil design tasks. The proposed framework generates samples that extend beyond the training data distribution, resulting in a greater 25 percent reduction in resistance for ship design and over 10 percent improvement in the lift-to-drag ratio for the 2D airfoil design. Successful integration of this model into the engineering design life cycle can enhance both designer productivity and overall design performance.
Related papers
- Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.<n>We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.<n>The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Generative VS non-Generative Models in Engineering Shape Optimization [0.3749861135832073]
We compare the effectiveness and efficiency of generative and non-generative models in constructing design spaces.
Non-generative models generate robust latent spaces with none or significantly fewer invalid designs when compared to generative models.
arXiv Detail & Related papers (2024-02-13T15:45:20Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - MO-PaDGAN: Reparameterizing Engineering Designs for Augmented
Multi-objective Optimization [13.866787416457454]
Multi-objective optimization is key to solving many Engineering Design problems.
Deep generative models can learn compact design representations.
Mo-PaDGAN adds a Determinantal Point Processes based loss function to the generative adversarial network.
arXiv Detail & Related papers (2020-09-15T13:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.