論文の概要: Bridging the Domain Gap for Stance Detection for the Zulu language
- arxiv url: http://arxiv.org/abs/2205.03153v1
- Date: Fri, 6 May 2022 11:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 16:34:41.456313
- Title: Bridging the Domain Gap for Stance Detection for the Zulu language
- Title(参考訳): Zulu言語のためのスタンス検出のためのドメインギャップのブリッジ
- Authors: Gcinizwe Dlamini, Imad Eddine Ibrahim Bekkouch, Adil Khan, and Leon
Derczynski
- Abstract要約: 文献で誤情報と戦うための既存のAIベースのアプローチは、自動姿勢検出を成功への不可欠な第一歩として示唆している。
そこで本研究では,ドメイン間のギャップを減らすために,ドメイン適応の手法を利用するブラックボックス非侵入手法を提案する。
これにより、英語で見られるように、この研究のターゲット言語であるズールー語に対するスタンス検出において、同様の結果を迅速に得ることができる。
- 参考スコア(独自算出の注目度): 6.509758931804479
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Misinformation has become a major concern in recent last years given its
spread across our information sources. In the past years, many NLP tasks have
been introduced in this area, with some systems reaching good results on
English language datasets. Existing AI based approaches for fighting
misinformation in literature suggest automatic stance detection as an integral
first step to success. Our paper aims at utilizing this progress made for
English to transfers that knowledge into other languages, which is a
non-trivial task due to the domain gap between English and the target
languages. We propose a black-box non-intrusive method that utilizes techniques
from Domain Adaptation to reduce the domain gap, without requiring any human
expertise in the target language, by leveraging low-quality data in both a
supervised and unsupervised manner. This allows us to rapidly achieve similar
results for stance detection for the Zulu language, the target language in this
work, as are found for English. We also provide a stance detection dataset in
the Zulu language. Our experimental results show that by leveraging English
datasets and machine translation we can increase performances on both English
data along with other languages.
- Abstract(参考訳): 情報ソースが広まるにつれ、近年は誤情報が大きな関心事になっている。
過去数年間、この分野では多くのNLPタスクが導入されており、いくつかのシステムは英語のデータセットに良い結果をもたらした。
文献で誤情報と戦うための既存のAIベースのアプローチは、自動姿勢検出を成功への不可欠な第一歩として示唆している。
本稿は,英語と対象言語とのドメインギャップのため,その知識を他の言語に伝達するための英語の進歩を活用することを目的としている。
本稿では,教師なしと教師なしの両方の方法で低品質データを活用することにより,対象言語における人間の専門知識を必要とせずに,ドメイン適応技術を用いてドメイン間ギャップを低減できるブラックボックス非インタラクティブ手法を提案する。
これにより、英語で見られるように、この作業のターゲット言語であるzulu言語の姿勢検出において、同様の結果が迅速に達成できます。
Zulu言語における姿勢検出データセットも提供する。
実験の結果、英語データセットと機械翻訳を利用することで、英語データと他の言語の両方のパフォーマンスを向上させることができることがわかった。
関連論文リスト
- A multilingual dataset for offensive language and hate speech detection for hausa, yoruba and igbo languages [0.0]
本研究では,ナイジェリアの3大言語であるHausa,Yoruba,Igboにおいて,攻撃的言語検出のための新しいデータセットの開発と導入の課題に対処する。
私たちはTwitterからデータを収集し、それを手動でアノテートして、ネイティブスピーカーを使用して、3つの言語毎にデータセットを作成しました。
学習済み言語モデルを用いて、データセット中の攻撃的言語の検出の有効性を評価し、最高の性能モデルが90%の精度で達成した。
論文 参考訳(メタデータ) (2024-06-04T09:58:29Z) - Multilingual Diversity Improves Vision-Language Representations [66.41030381363244]
このデータセットの事前トレーニングは、ImageNet上で英語のみまたは英語が支配するデータセットを使用してパフォーマンスが向上する。
GeoDEのような地理的に多様なタスクでは、アフリカから得られる最大の利益とともに、すべての地域における改善も観察します。
論文 参考訳(メタデータ) (2024-05-27T08:08:51Z) - Zero-shot Cross-lingual Stance Detection via Adversarial Language Adaptation [7.242609314791262]
本稿では,ゼロショット言語間スタンス検出,多言語翻訳拡張BERT (MTAB) に対する新しいアプローチを提案する。
本手法では,ゼロショット性能を向上させるために翻訳拡張を用い,モデルの有効性をさらに向上するために,対角学習と組み合わせる。
提案手法の有効性を実証し,強力なベースラインモデルと改良されたモデルとの比較を行った。
論文 参考訳(メタデータ) (2024-04-22T16:56:43Z) - A Persian Benchmark for Joint Intent Detection and Slot Filling [3.633817600744528]
自然言語理解(NLU)は、機械が人間の言語を理解し、処理できるようにするため、今日の技術において重要である。
本稿では,低リソース言語におけるNLUの分野を前進させることの重要性を強調した。
ATISデータセットに基づいた共同意図検出とスロットフィリングのためのペルシャベンチマークを作成する。
論文 参考訳(メタデータ) (2023-03-01T10:57:21Z) - CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual
Retrieval [73.48591773882052]
ほとんどのファクトチェックアプローチは、他の言語におけるデータ不足の問題にのみ英語に焦点を当てている。
クロスリンガル検索を付加した最初のファクトチェックフレームワークを提案する。
提案したクロスリンガル逆クローズタスク(XICT)を用いてレトリバーを訓練する。
論文 参考訳(メタデータ) (2022-09-05T17:36:14Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - Por Qu\'e N\~ao Utiliser Alla Spr{\aa}k? Mixed Training with Gradient
Optimization in Few-Shot Cross-Lingual Transfer [2.7213511121305465]
本研究では,ソースデータとターゲットデータの両方を学習する1ステップ混合学習手法を提案する。
我々は1つのモデルを使って全てのターゲット言語を同時に処理し、過度に言語固有のモデルを避ける。
提案手法は,全タスクの最先端性能と目標適応性能を高いマージンで向上させる。
論文 参考訳(メタデータ) (2022-04-29T04:05:02Z) - Cross-lingual Offensive Language Identification for Low Resource
Languages: The Case of Marathi [2.4737119633827174]
MOLDはMarathiのためにコンパイルされた最初のデータセットであり、低リソースのインド・アーリア語の研究のための新しいドメインを開設した。
このデータセットに関するいくつかの機械学習実験の結果は、ゼロショートや最先端の言語間変換器に関する他のトランスファーラーニング実験を含む。
論文 参考訳(メタデータ) (2021-09-08T11:29:44Z) - Learning Domain-Specialised Representations for Cross-Lingual Biomedical
Entity Linking [66.76141128555099]
言語横断型バイオメディカルエンティティリンクタスク(XL-BEL)を提案する。
まず、標準単言語英語BELタスクを超えて、標準単言語および多言語LMと同様に、標準的な知識に依存しない能力について検討する。
次に、リソースに富んだ言語からリソースに乏しい言語にドメイン固有の知識を移すことの課題に対処する。
論文 参考訳(メタデータ) (2021-05-30T00:50:00Z) - Unsupervised Cross-Lingual Speech Emotion Recognition Using
DomainAdversarial Neural Network [48.1535353007371]
SER(Cross-domain Speech Emotion Recog-nition)は、ソースとターゲットドメイン間の分散シフトによる課題である。
本論文では,この分散シフトを緩和するためのDANN(Domain Adversarial Neural Network)ベースのアプローチを提案する。
論文 参考訳(メタデータ) (2020-12-21T08:21:11Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。