UAV-aided Wireless Node Localization Using Hybrid Radio Channel Models
- URL: http://arxiv.org/abs/2205.03327v1
- Date: Fri, 6 May 2022 16:04:42 GMT
- Title: UAV-aided Wireless Node Localization Using Hybrid Radio Channel Models
- Authors: Omid Esrafilian, Rajeev Gangula, and David Gesbert
- Abstract summary: We treat UAV-user link channel model parameters and antenna radiation pattern of the UAV as unknowns that need to be estimated.
A hybrid channel model is proposed that consists of a traditional path loss model combined with a neural network approximating the UAV antenna gain function.
We then employ the particle swarm optimization technique which utilizes the learned hybrid channel model along with a 3D map of the environment to accurately localize the ground users.
- Score: 19.374861475180712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of ground user localization based on
received signal strength (RSS) measurements obtained by an unmanned aerial
vehicle (UAV). We treat UAV-user link channel model parameters and antenna
radiation pattern of the UAV as unknowns that need to be estimated. A hybrid
channel model is proposed that consists of a traditional path loss model
combined with a neural network approximating the UAV antenna gain function.
With this model and a set of offline RSS measurements, the unknown parameters
are estimated. We then employ the particle swarm optimization (PSO) technique
which utilizes the learned hybrid channel model along with a 3D map of the
environment to accurately localize the ground users. The performance of the
developed algorithm is evaluated through simulations and also real-world
experiments.
Related papers
- Generating High Dimensional User-Specific Wireless Channels using Diffusion Models [28.270917362301972]
This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models.
We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity.
arXiv Detail & Related papers (2024-09-05T22:08:28Z) - A Federated Channel Modeling System using Generative Neural Networks [8.424767096311928]
The paper proposes a data-driven approach to air-to-ground channel estimation in a millimeter-wave wireless network on an unmanned aerial vehicle.
We use Federated Learning (FL) for channel estimation and can predict the air-to-ground path loss between a low-altitude platform and a terrestrial terminal.
To evaluate the effectiveness of the proposed model, we evaluate its performance using Kullback-Leibler divergence (KL), and Wasserstein distance between the synthetic data distribution generated by the model and the actual data distribution.
arXiv Detail & Related papers (2023-05-30T08:50:22Z) - Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation [35.62977046569772]
We develop an unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model.
We then formulate channel estimation from a limited number of pilot measurements as an inverse problem.
Our proposed framework has the potential to be trained online using real noisy pilot measurements.
arXiv Detail & Related papers (2022-05-25T02:26:34Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
arXiv Detail & Related papers (2021-04-21T06:33:01Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - Power Control for a URLLC-enabled UAV system incorporated with DNN-Based
Channel Estimation [82.16169603954663]
This letter is concerned with power control for ultra-reliable low-latency communications (URLLC) enabled unmanned aerial vehicle (UAV) system incorporated with deep neural network (DNN) based channel estimation.
arXiv Detail & Related papers (2020-11-14T02:31:04Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.