Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model
- URL: http://arxiv.org/abs/2104.10378v1
- Date: Wed, 21 Apr 2021 06:33:01 GMT
- Title: Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model
- Authors: Guoliang Li, Shuai Wang, Jie Li, Rui Wang, Xiaohui Peng, and Tony Xiao
Han
- Abstract summary: Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
- Score: 20.670058030653458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human motion recognition (HMR) based on wireless sensing is a low-cost
technique for scene understanding. Current HMR systems adopt support vector
machines (SVMs) and convolutional neural networks (CNNs) to classify radar
signals. However, whether a deeper learning model could improve the system
performance is currently not known. On the other hand, training a machine
learning model requires a large dataset, but data gathering from experiment is
cost-expensive and time-consuming. Although wireless channel models can be
adopted for dataset generation, current channel models are mostly designed for
communication rather than sensing. To address the above problems, this paper
proposes a deep spectrogram network (DSN) by leveraging the residual mapping
technique to enhance the HMR performance. Furthermore, a primitive based
autoregressive hybrid (PBAH) channel model is developed, which facilitates
efficient training and testing dataset generation for HMR in a virtual
environment. Experimental results demonstrate that the proposed PBAH channel
model matches the actual experimental data very well and the proposed DSN
achieves significantly smaller recognition error than that of CNN.
Related papers
- Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
arXiv Detail & Related papers (2024-05-14T09:55:03Z) - A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems [35.07773969966621]
Deep learning (DL) has been emerging as a promising approach for channel estimation and signal detection in wireless communications.
To cope with the dynamic nature of the wireless channel, DL methods must be re-trained on newly non-aged collected data.
This paper proposes a novel universal deep neural network (Uni-DNN) that can achieve high detection performance in various wireless environments without retraining the model.
arXiv Detail & Related papers (2024-04-03T11:21:10Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Variational Autoencoder Assisted Neural Network Likelihood RSRP
Prediction Model [2.881201648416745]
We study a generative model for RSRP prediction, exploiting MDT data and a digital twin (DT)
Our proposed model that uses real-world data demonstrates an accuracy improvement of about 20% or more compared with the empirical model.
arXiv Detail & Related papers (2022-06-27T17:27:35Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
This paper investigates various applications of big data analytics, especially machine learning algorithms in wireless communications and channel modeling.
We propose a big data and machine learning enabled wireless channel model framework.
The proposed channel model is based on artificial neural networks (ANNs), including feed-forward neural network (FNN) and radial basis function neural network (RBF-NN)
arXiv Detail & Related papers (2020-02-28T05:56:14Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - Volterra Neural Networks (VNNs) [24.12314339259243]
We propose a Volterra filter-inspired Network architecture to reduce the complexity of Convolutional Neural Networks.
We show an efficient parallel implementation of this Volterra Neural Network (VNN) along with its remarkable performance.
The proposed approach is evaluated on UCF-101 and HMDB-51 datasets for action recognition, and is shown to outperform state of the art CNN approaches.
arXiv Detail & Related papers (2019-10-21T19:22:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.