Generating High Dimensional User-Specific Wireless Channels using Diffusion Models
- URL: http://arxiv.org/abs/2409.03924v1
- Date: Thu, 5 Sep 2024 22:08:28 GMT
- Title: Generating High Dimensional User-Specific Wireless Channels using Diffusion Models
- Authors: Taekyun Lee, Juseong Park, Hyeji Kim, Jeffrey G. Andrews,
- Abstract summary: This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models.
We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity.
- Score: 28.270917362301972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network (DNN)-based algorithms are emerging as an important tool for many physical and MAC layer functions in future wireless communication systems, including for large multi-antenna channels. However, training such models typically requires a large dataset of high-dimensional channel measurements, which are very difficult and expensive to obtain. This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models to produce user-specific channels that accurately reflect real-world wireless environments. Our approach employs a conditional denoising diffusion implicit models (cDDIM) framework, effectively capturing the relationship between user location and multi-antenna channel characteristics. We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity. The utility of this method is demonstrated through its efficacy in training various downstream tasks such as channel compression and beam alignment. Our approach significantly improves over prior methods, such as adding noise or using generative adversarial networks (GANs), especially in scenarios with limited initial measurements.
Related papers
- Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.
Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems [35.07773969966621]
Deep learning (DL) has been emerging as a promising approach for channel estimation and signal detection in wireless communications.
To cope with the dynamic nature of the wireless channel, DL methods must be re-trained on newly non-aged collected data.
This paper proposes a novel universal deep neural network (Uni-DNN) that can achieve high detection performance in various wireless environments without retraining the model.
arXiv Detail & Related papers (2024-04-03T11:21:10Z) - Neural Network Parameter Diffusion [50.85251415173792]
Diffusion models have achieved remarkable success in image and video generation.
In this work, we demonstrate that diffusion models can also.
generate high-performing neural network parameters.
arXiv Detail & Related papers (2024-02-20T16:59:03Z) - Generative Diffusion Models for Radio Wireless Channel Modelling and
Sampling [11.09458914721516]
The complexity of channel modelling and the cost of collecting high-quality wireless channel data have become major challenges.
We propose a diffusion model based channel sampling approach for rapidly realizations from limited data.
We show that, compared to existing GAN based approaches which suffer from mode collapse and unstable training, our diffusion based approach trains synthesizingly and generates diverse and high-fidelity samples.
arXiv Detail & Related papers (2023-08-10T13:49:26Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation [35.62977046569772]
We develop an unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model.
We then formulate channel estimation from a limited number of pilot measurements as an inverse problem.
Our proposed framework has the potential to be trained online using real noisy pilot measurements.
arXiv Detail & Related papers (2022-05-25T02:26:34Z) - Deep Diffusion Models for Robust Channel Estimation [1.7259824817932292]
We introduce a novel approach for multiple-input multiple-output (MIMO) channel estimation using deep diffusion models.
Our method uses a deep neural network that is trained to estimate the gradient of the log-likelihood of wireless channels at any point in high-dimensional space.
arXiv Detail & Related papers (2021-11-16T01:32:11Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Harnessing Wireless Channels for Scalable and Privacy-Preserving
Federated Learning [56.94644428312295]
Wireless connectivity is instrumental in enabling federated learning (FL)
Channel randomnessperturbs each worker inversions model update while multiple workers updates incur significant interference on bandwidth.
In A-FADMM, all workers upload their model updates to the parameter server using a single channel via analog transmissions.
This not only saves communication bandwidth, but also hides each worker's exact model update trajectory from any eavesdropper.
arXiv Detail & Related papers (2020-07-03T16:31:15Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.