論文の概要: Clustered Graph Matching for Label Recovery and Graph Classification
- arxiv url: http://arxiv.org/abs/2205.03486v1
- Date: Fri, 6 May 2022 22:02:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 14:37:12.682738
- Title: Clustered Graph Matching for Label Recovery and Graph Classification
- Title(参考訳): ラベル復元とグラフ分類のためのクラスタグラフマッチング
- Authors: Zhirui Li, Jesus Arroyo, Konstantinos Pantazis, Vince Lyzinski
- Abstract要約: 我々は,頂点整列したネットワークの平均値とシャッフルネットワークを異なるレベルの粒度でマッチングすることを検討する。
理論と実践の両方において、グラフが異なるネットワーククラスから来ている場合、ネットワークをクラスにクラスタ化した後、新しいグラフとクラスタ・アバグをマッチングすることで、グローバル平均グラフとマッチングするよりも高い忠実性マッチング性能が得られることを示す。
- 参考スコア(独自算出の注目度): 5.160439529706318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a collection of vertex-aligned networks and an additional
label-shuffled network, we propose procedures for leveraging the signal in the
vertex-aligned collection to recover the labels of the shuffled network. We
consider matching the shuffled network to averages of the networks in the
vertex-aligned collection at different levels of granularity. We demonstrate
both in theory and practice that if the graphs come from different network
classes, then clustering the networks into classes followed by matching the new
graph to cluster-averages can yield higher fidelity matching performance than
matching to the global average graph. Moreover, by minimizing the graph
matching objective function with respect to each cluster average, this approach
simultaneously classifies and recovers the vertex labels for the shuffled
graph.
- Abstract(参考訳): 頂点整列ネットワークと追加のラベルシャッフルネットワークが与えられた場合、頂点整列コレクションの信号を利用してシャッフルネットワークのラベルを復元する手法を提案する。
我々は,頂点整列したネットワークの平均値とシャッフルネットワークを異なるレベルの粒度でマッチングすることを検討する。
理論と実践の両方において、グラフが異なるネットワーククラスから来ている場合、ネットワークをクラスにクラスタリングし、新しいグラフをクラスタ平均にマッチさせることで、グローバル平均グラフとのマッチングよりも高い忠実度のパフォーマンスが得られることを実証する。
さらに、各クラスタ平均に対するグラフマッチング対象関数の最小化により、シャッフルされたグラフの頂点ラベルの分類と回復を同時に行う。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
多くの現実世界のシステムは、システム内の異なるエンティティがノードによって表現され、エッジによって相互作用するグラフとして表現することができる。
グラフィカルな構造を持つ大規模なデータセットを研究する上で重要なタスクはグラフクラスタリングである。
本稿では,FIR(Finite Impulse Response)およびARMA(Autoregressive moving Average)グラフフィルタのパラメータをクラスタリングに最適化したグラフ信号処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-09T01:49:23Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
本稿では,グラフレベルのクラスタリングの問題について検討する。
GLCC(Graph-Level Contrastive Clustering)というグラフレベルの一般的なクラスタリングフレームワークを提案する。
様々なよく知られたデータセットに対する実験は、競合するベースラインよりも提案したGLCCの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:08:10Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Weighted Graph Nodes Clustering via Gumbel Softmax [0.0]
重み付きグラフデータセットのクラスタリングのためのグラフクラスタリングアルゴリズムの研究成果について述べる。
アルゴリズムをGumbel Softmax(WGCGS)を介して重み付きグラフノードクラスタリングと呼びます。
論文 参考訳(メタデータ) (2021-02-22T05:05:35Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
本稿では,グラフ InfoClust というグラフ表現学習手法を提案する。
同社はさらに、クラスタレベルの情報コンテンツをキャプチャしようとしている。
この最適化により、ノード表現はよりリッチな情報とノイズ相互作用をキャプチャし、それによって品質が向上する。
論文 参考訳(メタデータ) (2020-09-15T09:33:20Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。