Unified Chinese License Plate Detection and Recognition with High
Efficiency
- URL: http://arxiv.org/abs/2205.03582v1
- Date: Sat, 7 May 2022 07:35:51 GMT
- Title: Unified Chinese License Plate Detection and Recognition with High
Efficiency
- Authors: Yanxiang Gong, Linjie Deng, Shuai Tao, Xinchen Lu, Peicheng Wu, Zhiwei
Xie, Zheng Ma, Mei Xie
- Abstract summary: Deep learning methods have reached an excellent performance on License Plate (LP) detection and recognition tasks.
It is still challenging to build a robust model for Chinese LPs since there are not enough large and representative datasets.
We propose a new dataset named Chinese Road Plate dataset (CRPD) that contains multi-objective Chinese LP images.
- Score: 3.0279719282256137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning-based methods have reached an excellent performance
on License Plate (LP) detection and recognition tasks. However, it is still
challenging to build a robust model for Chinese LPs since there are not enough
large and representative datasets. In this work, we propose a new dataset named
Chinese Road Plate Dataset (CRPD) that contains multi-objective Chinese LP
images as a supplement to the existing public benchmarks. The images are mainly
captured with electronic monitoring systems with detailed annotations. To our
knowledge, CRPD is the largest public multi-objective Chinese LP dataset with
annotations of vertices. With CRPD, a unified detection and recognition network
with high efficiency is presented as the baseline. The network is end-to-end
trainable with totally real-time inference efficiency (30 fps with 640p). The
experiments on several public benchmarks demonstrate that our method has
reached competitive performance. The code and dataset will be publicly
available at https://github.com/yxgong0/CRPD.
Related papers
- Towards Automatic Power Battery Detection: New Challenge, Benchmark
Dataset and Baseline [70.30473488226093]
We conduct a comprehensive study on a new task named power battery detection (PBD)
It aims to localize the dense cathode and anode plates endpoints from X-ray images to evaluate the quality of power batteries.
We propose a novel segmentation-based solution for PBD, termed multi-dimensional collaborative network (MDCNet)
arXiv Detail & Related papers (2023-12-05T06:18:38Z) - Leveraging Multi-view Data for Improved Detection Performance: An
Industrial Use Case [0.5249805590164901]
We present a multi-view object detection framework that offers a fast and precise solution.
We introduce a novel multi-view dataset with semi-automatic ground-truth data, which results in significant labeling resource savings.
Our experiments demonstrate a 15% improvement in mAP for detecting components that range in size from 0.5 to 27.0 mm.
arXiv Detail & Related papers (2023-04-17T09:41:37Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment.
The dataset is based on the popular Habitat simulator, in which it is possible to generate indoor scenes using both own sensor data and open datasets.
arXiv Detail & Related papers (2022-12-30T12:20:56Z) - End-to-End High Accuracy License Plate Recognition Based on Depthwise
Separable Convolution Networks [0.0]
We propose a novel segmentation-free framework for license plate recognition and introduce NP-ALPR dataset.
The proposed network model consists of the latest deep learning methods and state-of-the-art ideas, and benefits from a novel network architecture.
We evaluate the effectiveness of the proposed method on three different datasets and show a recognition accuracy of over 99% and over 70 fps.
arXiv Detail & Related papers (2022-02-21T14:45:03Z) - Wukong: 100 Million Large-scale Chinese Cross-modal Pre-training Dataset
and A Foundation Framework [99.38817546900405]
This paper presents a large-scale Chinese cross-modal dataset for benchmarking different multi-modal pre-training methods.
We release a Large-Scale Chinese Cross-modal dataset named Wukong, containing 100 million Chinese image-text pairs from the web.
arXiv Detail & Related papers (2022-02-14T14:37:15Z) - On the Cross-dataset Generalization in License Plate Recognition [1.8514314381314887]
We propose a traditional-split versus leave-one-dataset-out experimental setup to empirically assess the cross-dataset generalization of 12 OCR models.
Results shed light on the limitations of the traditional-split protocol for evaluating approaches in the ALPR context.
arXiv Detail & Related papers (2022-01-02T00:56:09Z) - End-to-End License Plate Recognition Pipeline for Real-time Low Resource
Video Based Applications [0.43012765978447565]
We propose a novel two-stage detection pipeline paired with Vision API to provide real-time inference speed.
We trained our models on an image dataset and a video dataset containing license plates in the wild.
We observed reasonable detection and recognition performance with real-time processing speed (27.2 frames per second)
arXiv Detail & Related papers (2021-08-18T18:31:01Z) - Rethinking and Designing a High-performing Automatic License Plate
Recognition Approach [16.66787965777127]
We propose a novel automatic license plate recognition (ALPR) approach, termed VSNet.
VSNet includes two CNNs, i.e., VertexNet for license plate detection and SCR-Net for license plate recognition, which is integrated in a resampling-based cascaded manner.
Experimental results show that the proposed VSNet outperforms state-of-the-art methods by more than 50% relative improvement on error rate.
arXiv Detail & Related papers (2020-11-30T16:03:57Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - A Robust Attentional Framework for License Plate Recognition in the Wild [95.7296788722492]
We propose a robust framework for license plate recognition in the wild.
It is composed of a tailored CycleGAN model for license plate image generation and an elaborate designed image-to-sequence network for plate recognition.
We release a new license plate dataset, named "CLPD", with 1200 images from all 31 provinces in mainland China.
arXiv Detail & Related papers (2020-06-06T17:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.