Superconducting giant atom waveguide QED: Quantum Zeno and Anti-Zeno
effects in ultrastrong coupling regime
- URL: http://arxiv.org/abs/2205.03674v1
- Date: Sat, 7 May 2022 15:58:12 GMT
- Title: Superconducting giant atom waveguide QED: Quantum Zeno and Anti-Zeno
effects in ultrastrong coupling regime
- Authors: Xiaojun Zhang, Weijun Cheng, Zhirui Gong, Taiyu Zheng, and Zhihai Wang
- Abstract summary: We construct an artificial giant atom model by coupling a superconducting circuits to a transmission line by two coupling points.
In the ultrastrong coupling regime, we show that the Lamb shift of the giant atom, which is induced by the non-negligible counter-rotating atom-waveguide coupling term, will modify its dissipation process.
- Score: 0.898744400066591
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The giant atom system is a new paradigm in quantum optics, in which the
traditional dipole approximation is not available. In this paper, we construct
an artificial giant atom model by coupling a superconducting circuits to a
transmission line by two coupling points. In the ultrastrong coupling regime,
we show that the Lamb shift of the giant atom, which is induced by the
non-negligible counter-rotating atom-waveguide coupling term, will modify its
dissipation process. Furthermore, we investigate quantum Zeno and anti-Zeno
effect where the size of the giant atom serves as a sensitive controller.
Specifically, by comparing the critical measurement interval and the life time
of the giant atom, we clarify the condition for the occurring of quantum
anti-Zeno effect. We hope our work is useful for the application of giant atom
system in the investigation of fundamental problems of quantum mechanics.
Related papers
- Controlling Markovianity with Chiral Giant Atoms [0.0]
A hallmark of giant-atom physics is their non-Markovian character in the form of self-coherent feedback.
We show that by adjusting the couplings' phases, a giant atom can, counterintuitively, enter an exact Markovian regime.
arXiv Detail & Related papers (2024-02-23T19:00:01Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum interference and controllable magic cavity QED via a giant atom
in coupled resonator waveguide [0.9642142933936202]
We study the Markovian and Non-Markovian dynamics in a giant atom system which couples to a coupled resonator waveguide (CRW) via two distant sites.
We find that the giant atom population can exhibit an oscillating behavior and the photon can be trapped in the giant atom regime.
The predicted effects can be probed in state-of-the-art waveguide QED experiments and provide a striking example of how the different kinds of bound states modify the dynamics of quantum open system.
arXiv Detail & Related papers (2023-03-29T06:23:52Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Interaction between giant atoms in a one-dimensional structured
environment [0.0]
We study the interaction between two giant atoms mediated by a structured waveguide.
We show decoherence-free interaction is possible for different atom-cavity detunings.
Results may find applications in quantum simulation and quantum gate implementation.
arXiv Detail & Related papers (2022-08-08T12:47:09Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Giant atoms with time-dependent couplings [8.547949480699632]
We study the decay dynamics of a two-level giant atom that is coupled to a waveguide with time-dependent coupling strengths.
We show that the dynamics of the atom depends on the atom-waveguide coupling strengths at an earlier time.
arXiv Detail & Related papers (2022-01-29T12:24:56Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Engineering the Level Structure of a Giant Artificial Atom in Waveguide
Quantum Electrodynamics [5.536933131203853]
A "giant" atom is formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line.
We show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude.
By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective system.
arXiv Detail & Related papers (2020-03-31T13:11:22Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.