論文の概要: End-to-End Rubbing Restoration Using Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2205.03743v1
- Date: Sun, 8 May 2022 00:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-15 05:59:50.519367
- Title: End-to-End Rubbing Restoration Using Generative Adversarial Networks
- Title(参考訳): 生成逆ネットワークを用いたエンドツーエンドラビング修復
- Authors: Gongbo Sun, Zijie Zheng, and Ming Zhang
- Abstract要約: 不完全なラビング文字の復元のためのRubbingGANモデルを提案する。
収集したデータセットに基づいて、Zhang Menglong Beiフォントスタイルを学習し、文字を復元するためにRubbingGANを適用します。
- 参考スコア(独自算出の注目度): 8.176704054425645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rubbing restorations are significant for preserving world cultural history.
In this paper, we propose the RubbingGAN model for restoring incomplete rubbing
characters. Specifically, we collect characters from the Zhang Menglong Bei and
build up the first rubbing restoration dataset. We design the first generative
adversarial network for rubbing restoration. Based on the dataset we collect,
we apply the RubbingGAN to learn the Zhang Menglong Bei font style and restore
the characters. The results of experiments show that RubbingGAN can repair both
slightly and severely incomplete rubbing characters fast and effectively.
- Abstract(参考訳): ルビング修復は世界文化史の保存に重要である。
本稿では,不完全なラビング文字の復元のためのRubbingGANモデルを提案する。
具体的には、zhang menglong beiから文字を収集し、最初のラビング復元データセットを構築する。
修復作業のための第1世代対向ネットワークを設計する。
収集したデータセットに基づいて、Zhang Menglong Beiフォントスタイルを学習し、文字を復元するためにRubbingGANを適用します。
実験の結果,rubbingganはわずかに不完全なrubingキャラクタを迅速かつ効果的に修復できることが判明した。
関連論文リスト
- DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation [46.22939360256696]
我々は、革新的なデータキュレーションパイプラインであるGenIRと、最先端の拡散変換器(DiT)ベースの画像復元モデルであるDreamClearの2つの戦略を提案する。
我々の先駆的な貢献であるGenIRは、既存のデータセットの制限を克服するデュアルプロンプト学習パイプラインです。
DreamClear は DiT ベースの画像復元モデルである。テキスト・ツー・イメージ(T2I)拡散モデルの生成先行と,マルチモーダル大言語モデル(MLLM)の堅牢な知覚能力を利用して復元を実現する。
論文 参考訳(メタデータ) (2024-10-24T11:57:20Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
本稿では,人間の手書きによる画像復元モデルを導出する手法を提案する。
InstructIRという手法は、いくつかの修復作業において最先端の結果を得る。
論文 参考訳(メタデータ) (2024-01-29T18:53:33Z) - Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild [57.06779516541574]
SUPIR (Scaling-UP Image Restoration) は、生成前処理とモデルスケールアップのパワーを利用する、画期的な画像復元手法である。
モデルトレーニングのための2000万の高解像度高画質画像からなるデータセットを収集し、それぞれに記述的テキストアノテーションを付加する。
論文 参考訳(メタデータ) (2024-01-24T17:58:07Z) - Improving Image Restoration through Removing Degradations in Textual
Representations [60.79045963573341]
劣化画像のテキスト表現の劣化を除去し,画像復元を改善するための新たな視点を導入する。
クロスモーダル支援に対処するため,劣化した画像をテキスト表現にマッピングし,劣化を除去する手法を提案する。
特に、画像からテキストへのマッパーとテキスト復元モジュールをCLIP対応のテキストから画像へのモデルに組み込んで、ガイダンスを生成する。
論文 参考訳(メタデータ) (2023-12-28T19:18:17Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [70.46245698746874]
DiffBIRは、視覚の異なる画像復元タスクを処理できる一般的な修復パイプラインである。
DiffBIRは, ブラインド画像復元問題を, 1) 劣化除去: 画像に依存しない内容の除去; 2) 情報再生: 失われた画像内容の生成の2段階に分離する。
第1段階では, 修復モジュールを用いて劣化を除去し, 高忠実度復元結果を得る。
第2段階では、潜伏拡散モデルの生成能力を活用して現実的な詳細を生成するIRControlNetを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:11:52Z) - Towards Authentic Face Restoration with Iterative Diffusion Models and
Beyond [30.114913184727]
我々は$textbfIDM$, $textbfI$teratively learned face restoration systemを$textbfD$iffusionに基づいて提案する。
ブラインドフェイス修復作業における優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-18T06:31:01Z) - Understanding Reconstruction Attacks with the Neural Tangent Kernel and
Dataset Distillation [110.61853418925219]
我々は、データセット再構築攻撃のより強力なバージョンを構築し、無限の幅で設定されたエンペントリアルトレーニングを確実に回復する方法を示す。
理論的にも経験的にも再構成された画像は、データセットの「外部」に傾向を示す。
これらのリコンストラクション攻撃は, テクストデータセット蒸留において, 再構成画像上で再トレーニングを行い, 高い予測精度を得ることができる。
論文 参考訳(メタデータ) (2023-02-02T21:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。