論文の概要: Deep Embedded Multi-View Clustering via Jointly Learning Latent
Representations and Graphs
- arxiv url: http://arxiv.org/abs/2205.03803v1
- Date: Sun, 8 May 2022 07:40:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 16:17:21.355476
- Title: Deep Embedded Multi-View Clustering via Jointly Learning Latent
Representations and Graphs
- Title(参考訳): 潜在表現とグラフの協調学習による深層埋め込みマルチビュークラスタリング
- Authors: Zongmo Huang, Yazhou Ren, Xiaorong Pu, Lifang He
- Abstract要約: DMVCJ (Jointly Learning Latent Representation and Graphs) を用いたディープ埋め込み型マルチビュークラスタリングを提案する。
潜在グラフと特徴表現を共同で学習することにより,我々のモデルでグラフ畳み込みネットワーク(GCN)技術が利用可能となる。
潜在グラフに示すノードの隣接関係に基づいて、ノイズを緩和するためのサンプル重み付け戦略を設計する。
- 参考スコア(独自算出の注目度): 13.052394521739192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the representation learning capability of the deep learning models, deep
embedded multi-view clustering (MVC) achieves impressive performance in many
scenarios and has become increasingly popular in recent years. Although great
progress has been made in this field, most existing methods merely focus on
learning the latent representations and ignore that learning the latent graph
of nodes also provides available information for the clustering task. To
address this issue, in this paper we propose Deep Embedded Multi-view
Clustering via Jointly Learning Latent Representations and Graphs (DMVCJ),
which utilizes the latent graphs to promote the performance of deep embedded
MVC models from two aspects. Firstly, by learning the latent graphs and feature
representations jointly, the graph convolution network (GCN) technique becomes
available for our model. With the capability of GCN in exploiting the
information from both graphs and features, the clustering performance of our
model is significantly promoted. Secondly, based on the adjacency relations of
nodes shown in the latent graphs, we design a sample-weighting strategy to
alleviate the noisy issue, and further improve the effectiveness and robustness
of the model. Experimental results on different types of real-world multi-view
datasets demonstrate the effectiveness of DMVCJ.
- Abstract(参考訳): ディープラーニングモデルの表現学習能力により、多くのシナリオにおいて深い組込みマルチビュークラスタリング(MVC)は印象的なパフォーマンスを実現し、近年はますます人気が高まっている。
この分野では大きな進歩があったが、既存のほとんどのメソッドは潜在表現の学習にのみ焦点を合わせ、ノードの潜在グラフの学習もまたクラスタリングタスクに利用可能な情報を提供することを無視する。
本稿では,2つの側面から深部埋め込みMVCモデルの性能を促進するために潜時グラフを利用するDMVCJ(Jointly Learning Latent Representations and Graphs)による深部埋め込みマルチビュークラスタリングを提案する。
まず,潜在グラフと特徴表現を共同で学習することで,本モデルではグラフ畳み込みネットワーク(gcn)手法が利用可能となる。
グラフと特徴の両方から情報を利用するGCNの能力により、我々のモデルのクラスタリング性能は著しく向上する。
次に,潜在グラフに示されるノードの隣接関係に基づいて,ノイズ低減のためのサンプル重み付け戦略を考案し,モデルの有効性と頑健性をさらに向上させる。
実世界のマルチビューデータセットの異なる種類の実験結果から,DMVCJの有効性が示された。
関連論文リスト
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
部分的マルチビュークラスタリング (PVC) は、実世界のアプリケーションにおけるデータ分析における実用的な研究課題である。
既存のクラスタリング手法は、不完全なビューを効果的に扱うのに苦労し、サブ最適クラスタリング性能に繋がる。
非完全多視点データにおける潜在的特徴の一貫性を最大化することを目的とした、コントラスト学習に基づく新しい双対最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T19:16:01Z) - Language Models are Graph Learners [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端のGNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - Disentangled Generative Graph Representation Learning [51.59824683232925]
本稿では,自己教師型学習フレームワークであるDiGGR(Disentangled Generative Graph Representation Learning)を紹介する。
潜伏要因を学習し、それをグラフマスクモデリングのガイドとして活用することを目的としている。
2つの異なるグラフ学習タスクのための11の公開データセットの実験は、DiGGRが従来よりも一貫して多くの自己教師付きメソッドを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-24T05:13:02Z) - SLRL: Structured Latent Representation Learning for Multi-view Clustering [24.333292079699554]
マルチビュークラスタリング(MVC)は、異なるビュー間の固有の一貫性と相補性を活用して、クラスタリングの結果を改善することを目的としている。
MVCでの広範な研究にもかかわらず、既存のほとんどのメソッドは、主にクラスタリングの有効性を高めるためにビューをまたいだ補完的な情報を活用することに重点を置いています。
本稿では,構造化潜在表現学習に基づくマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T09:43:57Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - Dual Information Enhanced Multi-view Attributed Graph Clustering [11.624319530337038]
本稿では,Dual Information enhanced Multi-view Attributed Graph Clustering (DIAGC)法を提案する。
提案手法では,複数の視点からのコンセンサスと特定情報の探索を阻害する特定情報再構成(SIR)モジュールを提案する。
相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、高レベル表現が所望のクラスタリング構造を満たすことを可能にする。
論文 参考訳(メタデータ) (2022-11-28T01:18:04Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph
Representation Learning [48.09362183184101]
マルチスケールのコントラスト学習によるシームズ自己蒸留の強化により,ノード表現を学習するための新しい自己教師型アプローチを提案する。
提案手法は,新しい最先端の成果を達成し,半教師ありの成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-12T14:20:13Z) - Consistent Multiple Graph Embedding for Multi-View Clustering [41.17336912278538]
Consistent Multiple Graph Embedding Clustering framework (CMGEC) を提案する。
具体的には,マルチビューデータの補完情報を柔軟に符号化するマルチグラフオートエンコーダを設計する。
各ビューにおける隣り合う特徴の類似性を維持するための学習共通表現を導くため、MMIM(Multi-view Mutual Information Maximization Module)を導入する。
論文 参考訳(メタデータ) (2021-05-11T09:08:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。