論文の概要: Dual Information Enhanced Multi-view Attributed Graph Clustering
- arxiv url: http://arxiv.org/abs/2211.14987v1
- Date: Mon, 28 Nov 2022 01:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 17:56:11.194134
- Title: Dual Information Enhanced Multi-view Attributed Graph Clustering
- Title(参考訳): デュアル情報強化マルチビュー分散グラフクラスタリング
- Authors: Jia-Qi Lin, Man-Sheng Chen, Xi-Ran Zhu, Chang-Dong Wang, Haizhang
Zhang
- Abstract要約: 本稿では,Dual Information enhanced Multi-view Attributed Graph Clustering (DIAGC)法を提案する。
提案手法では,複数の視点からのコンセンサスと特定情報の探索を阻害する特定情報再構成(SIR)モジュールを提案する。
相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、高レベル表現が所望のクラスタリング構造を満たすことを可能にする。
- 参考スコア(独自算出の注目度): 11.624319530337038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view attributed graph clustering is an important approach to partition
multi-view data based on the attribute feature and adjacent matrices from
different views. Some attempts have been made in utilizing Graph Neural Network
(GNN), which have achieved promising clustering performance. Despite this, few
of them pay attention to the inherent specific information embedded in multiple
views. Meanwhile, they are incapable of recovering the latent high-level
representation from the low-level ones, greatly limiting the downstream
clustering performance. To fill these gaps, a novel Dual Information enhanced
multi-view Attributed Graph Clustering (DIAGC) method is proposed in this
paper. Specifically, the proposed method introduces the Specific Information
Reconstruction (SIR) module to disentangle the explorations of the consensus
and specific information from multiple views, which enables GCN to capture the
more essential low-level representations. Besides, the Mutual Information
Maximization (MIM) module maximizes the agreement between the latent high-level
representation and low-level ones, and enables the high-level representation to
satisfy the desired clustering structure with the help of the Self-supervised
Clustering (SC) module. Extensive experiments on several real-world benchmarks
demonstrate the effectiveness of the proposed DIAGC method compared with the
state-of-the-art baselines.
- Abstract(参考訳): マルチビュー属性グラフクラスタリングは、属性特徴と、異なるビューからの隣接行列に基づいて、マルチビューデータを分割する重要なアプローチである。
有望なクラスタリング性能を達成したグラフニューラルネットワーク(GNN)の利用が試みられている。
それにもかかわらず、複数のビューに埋め込まれた固有の特定の情報に注意を払う人は少ない。
一方、低レベルの表現から潜在高レベルの表現を回復することができないため、ダウンストリームクラスタリングのパフォーマンスが大幅に制限される。
本稿では,これらのギャップを埋めるために,新しい2重情報強化多視点グラフクラスタリング(diagc)法を提案する。
具体的には,複数視点からのコンセンサスと特定情報の探索を解消するsir(specific information reconstruction)モジュールを導入することで,gcnがより本質的な低レベル表現をキャプチャできるようにする。
さらに、相互情報最大化(MIM)モジュールは、潜在高レベル表現と低レベル表現との合意を最大化し、自己監督クラスタリング(SC)モジュールの助けを借りて、高レベル表現が望ましいクラスタリング構造を満たすことを可能にする。
いくつかの実世界のベンチマーク実験では、提案手法の有効性を最先端のベースラインと比較した。
関連論文リスト
- SLRL: Structured Latent Representation Learning for Multi-view Clustering [24.333292079699554]
マルチビュークラスタリング(MVC)は、異なるビュー間の固有の一貫性と相補性を活用して、クラスタリングの結果を改善することを目的としている。
MVCでの広範な研究にもかかわらず、既存のほとんどのメソッドは、主にクラスタリングの有効性を高めるためにビューをまたいだ補完的な情報を活用することに重点を置いています。
本稿では,構造化潜在表現学習に基づくマルチビュークラスタリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T09:43:57Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Multilayer Graph Contrastive Clustering Network [14.864683908759327]
MGCCN(Multilayer Graph Contrastive Clustering Network)と呼ばれる多層グラフクラスタリングのための汎用的で効果的なオートエンコーダフレームワークを提案する。
MGCCNは3つのモジュールから構成される。(1)ノードと隣接ノードの関連性をよりよく把握するためにアテンション機構が適用され、(2)異なるネットワークにおける一貫性のある情報をよりよく探索するためにコントラスト融合戦略が導入され、(3)MGCCNはノードの埋め込みとクラスタリングを反復的に強化する自己管理コンポーネントを採用している。
論文 参考訳(メタデータ) (2021-12-28T07:21:13Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
デュアル・セルフ・スーパービジョン(DAGC)を用いたディープアテンション誘導グラフクラスタリング法を提案する。
我々は,三重項Kulback-Leibler分散損失を持つソフトな自己スーパービジョン戦略と,擬似的な監督損失を持つハードな自己スーパービジョン戦略からなる二重自己スーパービジョンソリューションを開発する。
提案手法は6つのベンチマークデータセットにおける最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-10T06:53:03Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Consistent Multiple Graph Embedding for Multi-View Clustering [41.17336912278538]
Consistent Multiple Graph Embedding Clustering framework (CMGEC) を提案する。
具体的には,マルチビューデータの補完情報を柔軟に符号化するマルチグラフオートエンコーダを設計する。
各ビューにおける隣り合う特徴の類似性を維持するための学習共通表現を導くため、MMIM(Multi-view Mutual Information Maximization Module)を導入する。
論文 参考訳(メタデータ) (2021-05-11T09:08:22Z) - Multi-view Hierarchical Clustering [12.01031088378791]
マルチビュークラスタリングは、マルチビューデータによるクラスタリング結果の促進を目的としている。
複数レベルの粒度でマルチビューデータを分割するマルチビュー階層クラスタリング(MHC)を提案する。
MHCはパラメータ選択なしで現実世界のアプリケーションに容易に効果的に利用することができる。
論文 参考訳(メタデータ) (2020-10-15T07:46:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
本研究では,複数のビューが一貫した情報を含み,それぞれのビューが相補的な情報を含むマルチビュークラスタリングの問題について検討する。
本稿では、一貫したグラフ正規化マルチビューサブスペースクラスタリング(GRMSC)を含む手法を提案する。
目的関数は多視点クラスタリングを実現するために拡張ラグランジアン乗算法により最適化される。
論文 参考訳(メタデータ) (2020-04-07T03:48:08Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。