論文の概要: On Generalisability of Machine Learning-based Network Intrusion
Detection Systems
- arxiv url: http://arxiv.org/abs/2205.04112v1
- Date: Mon, 9 May 2022 08:26:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-10 20:53:02.083023
- Title: On Generalisability of Machine Learning-based Network Intrusion
Detection Systems
- Title(参考訳): 機械学習に基づくネットワーク侵入検知システムの汎用性について
- Authors: Siamak Layeghy, Marius Portmann
- Abstract要約: 本稿では,4つのベンチマークNIDSデータセットを用いて,教師付き学習モデルと教師なし学習モデルの評価を行う。
我々の調査は、検討されたモデルのうちどのモデルもすべての研究されたデータセットを一般化できないことを示唆している。
また,本研究では,教師なし学習手法が,検討シナリオにおける教師付き学習モデルよりも一般化されていることも示唆した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many of the proposed machine learning (ML) based network intrusion detection
systems (NIDSs) achieve near perfect detection performance when evaluated on
synthetic benchmark datasets. Though, there is no record of if and how these
results generalise to other network scenarios, in particular to real-world
networks. In this paper, we investigate the generalisability property of
ML-based NIDSs by extensively evaluating seven supervised and unsupervised
learning models on four recently published benchmark NIDS datasets. Our
investigation indicates that none of the considered models is able to
generalise over all studied datasets. Interestingly, our results also indicate
that the generalisability has a high degree of asymmetry, i.e., swapping the
source and target domains can significantly change the classification
performance. Our investigation also indicates that overall, unsupervised
learning methods generalise better than supervised learning models in our
considered scenarios. Using SHAP values to explain these results indicates that
the lack of generalisability is mainly due to the presence of strong
correspondence between the values of one or more features and Attack/Benign
classes in one dataset-model combination and its absence in other datasets that
have different feature distributions.
- Abstract(参考訳): 提案する機械学習(ML)ベースのネットワーク侵入検出システム(NIDS)の多くは、合成ベンチマークデータセットで評価すると、ほぼ完璧な検出性能が得られる。
しかし、これらの結果が他のネットワークシナリオ、特に現実世界のネットワークに一般化するかどうかは記録されていない。
本稿では、最近発表された4つのベンチマークNIDSデータセット上で、7つの教師付き学習モデルおよび教師なし学習モデルを広範囲に評価することにより、MLベースのNIDSの汎用性について検討する。
我々の調査は、検討されたモデルのうちどのモデルもすべての研究データセットを一般化できないことを示唆している。
興味深いことに, 一般化可能性には高い非対称性があり, ソース領域とターゲット領域の入れ替えは分類性能を大きく変化させる可能性がある。
また,本研究では,教師なし学習手法が,検討シナリオにおける教師付き学習モデルよりも一般化されていることも示唆した。
これらの結果を説明するために SHAP 値を用いることで、一般可能性の欠如は主に、1つ以上の特徴の値と1つのデータセットモデルの組み合わせにおけるアタック/ベニオンクラスと、異なる特徴分布を持つ他のデータセットが存在しないことによる。
関連論文リスト
- On the Cross-Dataset Generalization of Machine Learning for Network
Intrusion Detection [50.38534263407915]
ネットワーク侵入検知システム(NIDS)はサイバーセキュリティの基本的なツールである。
多様なネットワークにまたがる一般化能力は、その有効性と現実のアプリケーションにとって必須の要素である。
本研究では,機械学習に基づくNIDSの一般化に関する包括的分析を行う。
論文 参考訳(メタデータ) (2024-02-15T14:39:58Z) - Towards out-of-distribution generalization in large-scale astronomical
surveys: robust networks learn similar representations [3.653721769378018]
ニューラルネットワーク表現の類似度尺度である Centered Kernel Alignment (CKA) を用いて、表現類似度と性能の関係について検討する。
モデルが分散シフトに対して堅牢である場合、OODデータ上に層間でかなり異なる表現を生成することが分かりました。
本稿では,CKAを誘導バイアスとして取り入れることで,モデル設計,トレーニング戦略,OOD問題を緩和する上での類似性表現の可能性について論じる。
論文 参考訳(メタデータ) (2023-11-29T19:00:05Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Towards Weakly-Supervised Hate Speech Classification Across Datasets [47.101942709219784]
そこで本研究では,テキスト分類モデルの有効性について検討した。
また,HS分類モデルの一般化性の低さの原因について,詳細な定量的,定性的な分析を行った。
論文 参考訳(メタデータ) (2023-05-04T08:15:40Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。