Forecast combinations: an over 50-year review
- URL: http://arxiv.org/abs/2205.04216v1
- Date: Mon, 9 May 2022 12:14:02 GMT
- Title: Forecast combinations: an over 50-year review
- Authors: Xiaoqian Wang, Rob J Hyndman, Feng Li, Yanfei Kang
- Abstract summary: Forecast combinations have flourished remarkably in the forecasting community.
This paper provides an up-to-date review of the literature on forecast combinations.
We discuss the potential and limitations of various methods and highlight how these ideas have developed over time.
- Score: 16.590353808305245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecast combinations have flourished remarkably in the forecasting community
and, in recent years, have become part of the mainstream of forecasting
research and activities. Combining multiple forecasts produced from the single
(target) series is now widely used to improve accuracy through the integration
of information gleaned from different sources, thereby mitigating the risk of
identifying a single "best" forecast. Combination schemes have evolved from
simple combination methods without estimation, to sophisticated methods
involving time-varying weights, nonlinear combinations, correlations among
components, and cross-learning. They include combining point forecasts, and
combining probabilistic forecasts. This paper provides an up-to-date review of
the extensive literature on forecast combinations, together with reference to
available open-source software implementations. We discuss the potential and
limitations of various methods and highlight how these ideas have developed
over time. Some important issues concerning the utility of forecast
combinations are also surveyed. Finally, we conclude with current research gaps
and potential insights for future research.
Related papers
- Optimizing accuracy and diversity: a multi-task approach to forecast
combinations [0.0]
We present a multi-task optimization paradigm that focuses on solving both problems simultaneously.
It incorporates an additional learning and optimization task into the standard feature-based forecasting approach.
The proposed approach elicits the essential role of diversity in feature-based forecasting.
arXiv Detail & Related papers (2023-10-31T15:26:33Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Learning Mixture Structure on Multi-Source Time Series for Probabilistic
Forecasting [4.179947630802189]
We propose a neural mixture structure-based probability model for learning different predictive relations.
We present the prediction and uncertainty quantification methods that apply to different distributions of target variables.
arXiv Detail & Related papers (2023-02-22T00:51:44Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Aggregating distribution forecasts from deep ensembles [0.0]
We study the question of how to aggregate distribution forecasts based on neural network-based approaches.
We show that combining forecast distributions can substantially improve the predictive performance.
We propose a general quantile aggregation framework for deep ensembles that shows superior performance compared to a linear combination of the forecast densities.
arXiv Detail & Related papers (2022-04-05T15:42:51Z) - CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting [70.54920804222031]
We propose a general probabilistic multi-view forecasting framework CAMul.
It can learn representations and uncertainty from diverse data sources.
It integrates the knowledge and uncertainty from each data view in a dynamic context-specific manner.
We show that CAMul outperforms other state-of-art probabilistic forecasting models by over 25% in accuracy and calibration.
arXiv Detail & Related papers (2021-09-15T17:13:47Z) - Forecast with Forecasts: Diversity Matters [9.66075743192747]
In recent years, the idea of using time series features to construct forecast combination model has flourished in the forecasting area.
In this work, we suggest a change of focus from the historical data to the produced forecasts to extract features.
We calculate the diversity of a pool of models based on the corresponding forecasts as a decisive feature and use meta-learning to construct diversity-based forecast combination models.
arXiv Detail & Related papers (2020-12-03T02:14:02Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Hierarchical forecast reconciliation with machine learning [0.34998703934432673]
This paper proposes a novel hierarchical forecasting approach based on machine learning.
It structurally combines the objectives of improved post-sample empirical forecasting accuracy and coherence.
Our results suggest that the proposed method gives superior point forecasts than existing approaches.
arXiv Detail & Related papers (2020-06-03T04:49:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.