論文の概要: Explainable Deep Learning Methods in Medical Image Classification: A
Survey
- arxiv url: http://arxiv.org/abs/2205.04766v3
- Date: Tue, 19 Sep 2023 13:03:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 20:54:04.461539
- Title: Explainable Deep Learning Methods in Medical Image Classification: A
Survey
- Title(参考訳): 医用画像分類における説明可能な深層学習法の検討
- Authors: Cristiano Patr\'icio, Jo\~ao C. Neves, Lu\'is F. Teixeira
- Abstract要約: 最先端のディープラーニングモデルは、異なるタイプの医療データの分類において、人間レベルの精度を達成した。
これらのモデルは、主に解釈可能性の欠如のために、臨床ではほとんど採用されていない。
ディープラーニングモデルのブラックボックス性は、これらのモデルの意思決定プロセスを説明するための戦略を考案する必要性を高めている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The remarkable success of deep learning has prompted interest in its
application to medical imaging diagnosis. Even though state-of-the-art deep
learning models have achieved human-level accuracy on the classification of
different types of medical data, these models are hardly adopted in clinical
workflows, mainly due to their lack of interpretability. The black-box-ness of
deep learning models has raised the need for devising strategies to explain the
decision process of these models, leading to the creation of the topic of
eXplainable Artificial Intelligence (XAI). In this context, we provide a
thorough survey of XAI applied to medical imaging diagnosis, including visual,
textual, example-based and concept-based explanation methods. Moreover, this
work reviews the existing medical imaging datasets and the existing metrics for
evaluating the quality of the explanations. In addition, we include a
performance comparison among a set of report generation-based methods. Finally,
the major challenges in applying XAI to medical imaging and the future research
directions on the topic are also discussed.
- Abstract(参考訳): 深層学習の顕著な成功は、その医療画像診断への応用への興味を惹きつけている。
最先端のディープラーニングモデルは、異なるタイプの医療データの分類において人間レベルの精度を達成したが、これらのモデルは、主に解釈可能性の欠如のために、臨床ワークフローではほとんど採用されていない。
ディープラーニングモデルのブラックボックス性は、これらのモデルの意思決定プロセスを説明するための戦略開発の必要性を高め、eXplainable Artificial Intelligence(XAI)というトピックが生み出された。
本稿では, 医用画像診断に応用されるXAIについて, 視覚的, テキスト的, 例ベース, 概念的説明法など, 徹底的に調査する。
さらに,本研究は,既存の医用画像データセットと,その説明の質を評価するための既存の指標をレビューする。
また,レポート生成手法の集合間の性能比較も含んでいる。
最後に,XAIを医用画像に適用する上での大きな課題と今後の研究方向性についても論じる。
関連論文リスト
- Aligning Human Knowledge with Visual Concepts Towards Explainable Medical Image Classification [8.382606243533942]
本稿では,説明可能な言語インフォームド基準に基づく診断に向けて,シンプルで効果的なフレームワークであるExplicdを紹介した。
事前訓練された視覚言語モデルを活用することで、Explicdはこれらの基準を知識アンカーとして埋め込み空間に注入する。
最終的な診断結果は、符号化された視覚概念とテキストの基準埋め込みとの類似度スコアに基づいて決定される。
論文 参考訳(メタデータ) (2024-06-08T23:23:28Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Deep Learning Approaches for Data Augmentation in Medical Imaging: A
Review [2.8145809047875066]
医用画像拡張のための3種類の深部生成モデル(変分オートエンコーダ、生成対向ネットワーク、拡散モデル)に焦点をあてる。
本稿では,これらの各モデルにおける技術の現状について概説するとともに,分類,セグメンテーション,クロスモーダル翻訳など,医療画像における下流業務における活用の可能性について論じる。
我々のゴールは、医用画像増倍のための深部生成モデルの使用に関する総合的なレビューを提供することであり、医用画像解析における深部学習アルゴリズムの性能向上のためのこれらのモデルの可能性を明らかにすることである。
論文 参考訳(メタデータ) (2023-07-24T20:53:59Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - TorchEsegeta: Framework for Interpretability and Explainability of
Image-based Deep Learning Models [0.0]
臨床医はしばしば自動画像処理アプローチ、特にディープラーニングに基づく手法の適用に懐疑的である。
本稿では,アルゴリズムの決定に最も影響を及ぼす解剖学的領域を記述することによって,ディープラーニングアルゴリズムの結果の解釈と説明を支援するアプローチを提案する。
ディープラーニングモデルに様々な解釈可能性および説明可能性技術を適用するための統合フレームワークであるTorchEsegetaを提案する。
論文 参考訳(メタデータ) (2021-10-16T01:00:15Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Explainable deep learning models in medical image analysis [0.0]
様々な医学的診断に非常に効果的で、その一部で人間の専門家を圧倒している。
最近の説明可能性研究は、モデルの決定に最も影響を及ぼす特徴を示すことを目的としている。
ここでは、様々な医療画像タスクに対する説明可能な深層学習の現在の応用について概説する。
論文 参考訳(メタデータ) (2020-05-28T06:31:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。