論文の概要: Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions
- arxiv url: http://arxiv.org/abs/2209.10307v2
- Date: Mon, 8 May 2023 10:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 00:26:48.803020
- Title: Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions
- Title(参考訳): 医用画像分割におけるディープラーニングのトリックの理解:挑戦と今後の方向性
- Authors: Dong Zhang, Yi Lin, Hao Chen, Zhuotao Tian, Xin Yang, Jinhui Tang,
Kwang Ting Cheng
- Abstract要約: 本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
- 参考スコア(独自算出の注目度): 66.40971096248946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past few years, the rapid development of deep learning technologies
for computer vision has significantly improved the performance of medical image
segmentation (MedISeg). However, the diverse implementation strategies of
various models have led to an extremely complex MedISeg system, resulting in a
potential problem of unfair result comparisons. In this paper, we collect a
series of MedISeg tricks for different model implementation phases (i.e.,
pre-training model, data pre-processing, data augmentation, model
implementation, model inference, and result post-processing), and
experimentally explore the effectiveness of these tricks on consistent
baselines. With the extensive experimental results on both the representative
2D and 3D medical image datasets, we explicitly clarify the effect of these
tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong
MedISeg repository, where each component has the advantage of plug-and-play. We
believe that this milestone work not only completes a comprehensive and
complementary survey of the state-of-the-art MedISeg approaches, but also
offers a practical guide for addressing the future medical image processing
challenges including but not limited to small dataset, class imbalance
learning, multi-modality learning, and domain adaptation. The code and training
weights have been released at: https://github.com/hust-linyi/seg_trick.
- Abstract(参考訳): 近年,コンピュータビジョンのためのディープラーニング技術の急速な発展により,医用画像セグメンテーション(MedISeg)の性能が大幅に向上した。
しかし、様々なモデルの多様な実装戦略は、非常に複雑なmedisegシステムを生み出し、不公平な結果比較の潜在的な問題を引き起こした。
本稿では,異なるモデル実装フェーズ(事前学習モデル,データ前処理,データ拡張,モデル実装,モデル推論,結果後処理など)に対する一連のMedISegトリックを収集し,一貫性のあるベースライン上でこれらのトリックの有効性を実験的に検討する。
代表的な2次元および3次元医用画像データセットの広範な実験結果から,これらのトリックの効果を明らかにした。
さらに、調査したトリックに基づいて、各コンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリもオープンソース化しました。
このマイルストーンは、最先端のMedISegアプローチに関する包括的で補完的な調査を完了しただけでなく、小さなデータセット、クラス不均衡学習、マルチモダリティ学習、ドメイン適応など、医療画像処理の課題に対処するための実践的なガイドも提供しています。
コードとトレーニングの重みは、https://github.com/hust-linyi/seg_trickでリリースされている。
関連論文リスト
- LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
我々は、AIとクラウドソーシングを組み合わせた堅牢で汎用的なフレームワークを導入し、医療画像データセットの品質と量を改善する。
当社のアプローチでは,多様なクラウドアノテータのグループによる医療画像のラベル付けを効率的に行うことができる,ユーザフレンドリーなオンラインプラットフォームを活用している。
我々は、生成AIモデルであるpix2pixGANを使用して、リアルな形態的特徴をキャプチャする合成画像を用いてトレーニングデータセットを拡張する。
論文 参考訳(メタデータ) (2024-09-04T21:22:54Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - MIST: A Simple and Scalable End-To-End 3D Medical Imaging Segmentation Framework [1.1608974088441382]
医用イメージングツールキット(MIST)は、深層学習に基づく医用イメージングセグメンテーション手法の一貫性のあるトレーニング、テスト、評価を容易にするように設計されている。
MISTはデータ分析、前処理、評価パイプラインを標準化し、複数のアーキテクチャと損失関数を収容する。
論文 参考訳(メタデータ) (2024-07-31T05:17:31Z) - DeepMediX: A Deep Learning-Driven Resource-Efficient Medical Diagnosis
Across the Spectrum [15.382184404673389]
この作業では,この課題に大きく対処する,画期的な,リソース効率の高いモデルである textttDeepMediX が紹介されている。
MobileNetV2アーキテクチャ上に構築されたDeepMediXは、脳MRIスキャンと皮膚がん画像の分類に長けている。
DeepMediXの設計にはフェデレートラーニングの概念も含まれている。
論文 参考訳(メタデータ) (2023-07-01T12:30:58Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - BenchMD: A Benchmark for Unified Learning on Medical Images and Sensors [8.695342954247606]
アーキテクチャやトレーニング技術を含む,統一的でモダリティに依存しない手法が,さまざまな医療タスクでどのように機能するかをテストするベンチマークであるBenchMDを提示する。
その結果,統一的な学習手法がすべてのモダリティに対して高い性能を達成できないことが示され,ベンチマークに十分な改善の余地が残されている。
論文 参考訳(メタデータ) (2023-04-17T17:59:26Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。