論文の概要: THOR: Threshold-Based Ranking Loss for Ordinal Regression
- arxiv url: http://arxiv.org/abs/2205.04864v1
- Date: Tue, 10 May 2022 13:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 19:29:53.895080
- Title: THOR: Threshold-Based Ranking Loss for Ordinal Regression
- Title(参考訳): thor: 順序回帰におけるしきい値に基づくランキング損失
- Authors: Tzeviya Sylvia Fuchs and Joseph Keshet
- Abstract要約: 本稿では,インスタンスを順序カテゴリーに分類するための回帰に基づく順序回帰アルゴリズムを提案する。
回帰誤差を最小化することを目的とした新しいしきい値に基づくペアワイズ損失関数を追加し,平均絶対誤差(MAE)を最小化する。
5つの実世界のベンチマーク実験の結果、提案アルゴリズムは最先端の順序回帰アルゴリズムと比較して最良のMAE結果が得られることを示した。
- 参考スコア(独自算出の注目度): 17.384197085002686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a regression-based ordinal regression algorithm for
supervised classification of instances into ordinal categories. In contrast to
previous methods, in this work the decision boundaries between categories are
predefined, and the algorithm learns to project the input examples onto their
appropriate scores according to these predefined boundaries. This is achieved
by adding a novel threshold-based pairwise loss function that aims at
minimizing the regression error, which in turn minimizes the Mean Absolute
Error (MAE) measure. We implemented our proposed architecture-agnostic method
using the CNN-framework for feature extraction. Experimental results on five
real-world benchmarks demonstrate that the proposed algorithm achieves the best
MAE results compared to state-of-the-art ordinal regression algorithms.
- Abstract(参考訳): 本研究では,インスタンスを順序カテゴリーに分類するための回帰に基づく順序回帰アルゴリズムを提案する。
従来の手法とは対照的に、この研究ではカテゴリ間の決定境界は事前に定義され、アルゴリズムはこれらの事前定義された境界に従って入力サンプルを適切なスコアに投影する。
これは、回帰誤差を最小化し、平均絶対誤差(MAE)を最小化する、新しいしきい値に基づくペアワイズ損失関数を追加することで達成される。
特徴抽出のためのCNNフレームワークを用いて,提案手法を実装した。
5つの実世界のベンチマーク実験の結果から,提案アルゴリズムが最先端の順序回帰アルゴリズムと比較して最高のmae結果が得られることが示された。
関連論文リスト
- A Regression Approach to Learning-Augmented Online Algorithms [17.803569868141647]
本論文では,本手法について紹介し,一般的なオンライン検索フレームワークの文脈で考察する。
この回帰問題におけるサンプルの複雑さにほぼ厳密な境界を示し、その結果を不可知的な設定にまで拡張する。
技術的観点から、回帰問題に対する損失関数の設計にオンライン最適化ベンチマークを組み込むことが重要であることを示す。
論文 参考訳(メタデータ) (2022-05-18T04:29:14Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
本稿では,ランク制約,ベクトル正規化(疎性など),一般損失関数に基づく行列変分回帰モデルのフレームワークを提案する。
アルゴリズムは収束することが保証されており、アルゴリズムのすべての累積点が$O(sqrtn)$100の順序で推定誤差を持ち、最小値の精度をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2022-05-14T18:03:48Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Robust Regression Revisited: Acceleration and Improved Estimation Rates [25.54653340884806]
強い汚染モデルの下で, 統計的回帰問題に対する高速アルゴリズムについて検討する。
目的は、逆向きに破損したサンプルを与えられた一般化線形モデル(GLM)を概ね最適化することである。
実行時や推定保証が改善された頑健な回帰問題に対して,ほぼ直線的な時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:21:56Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
第一次下降法における学習率の適応的選択のための新しいアプローチであるtextit-Meta-Regularizationを提案する。
本手法は,正規化項を追加して目的関数を修正し,共同処理パラメータをキャストする。
論文 参考訳(メタデータ) (2021-04-12T13:13:34Z) - Piecewise linear regression and classification [0.20305676256390928]
本稿では,線形予測器を用いた多変量回帰と分類問題の解法を提案する。
本論文で記述されたアルゴリズムのpython実装は、http://cse.lab.imtlucca.it/bem porad/parcで利用可能である。
論文 参考訳(メタデータ) (2021-03-10T17:07:57Z) - Variance Penalized On-Policy and Off-Policy Actor-Critic [60.06593931848165]
本稿では,平均値と変動値の両方を含むパフォーマンス基準を最適化する,オン・ポリティィおよびオフ・ポリティィ・アクター・クリティカルなアルゴリズムを提案する。
提案手法は, アクタ批判的かつ事前の分散-ペナライゼーションベースラインに匹敵するだけでなく, リターンのばらつきが低いトラジェクトリも生成する。
論文 参考訳(メタデータ) (2021-02-03T10:06:16Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
平均報酬MDPの関数近似によるオフポリシ政策評価を検討する。
ブートストラップは必要であり、オフポリシ学習とFAと一緒に、致命的なトライアドをもたらす。
そこで本研究では,勾配型tdアルゴリズムの成功を再現する2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-08T00:43:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。