Accelerated functional brain aging in major depressive disorder:
evidence from a large scale fMRI analysis of Chinese participants
- URL: http://arxiv.org/abs/2205.04871v1
- Date: Sun, 8 May 2022 09:26:46 GMT
- Title: Accelerated functional brain aging in major depressive disorder:
evidence from a large scale fMRI analysis of Chinese participants
- Authors: Yunsong Luo, Wenyu Chen, Jiang Qiu, Tao Jia
- Abstract summary: Major depressive disorder (MDD) is one of the most common mental health conditions that has been intensively investigated for its association with brain atrophy and mortality.
Recent studies reveal that the deviation between the predicted and the chronological age can be a marker of accelerated brain aging to characterize MDD.
Here we make use of the REST-meta-MDD, a large scale resting-state fMRI dataset collected from multiple cohort participants in China.
- Score: 8.184714897613166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Major depressive disorder (MDD) is one of the most common mental health
conditions that has been intensively investigated for its association with
brain atrophy and mortality. Recent studies reveal that the deviation between
the predicted and the chronological age can be a marker of accelerated brain
aging to characterize MDD. However, current conclusions are usually drawn based
on structural MRI information collected from Caucasian participants. The
universality of this biomarker needs to be further validated by subjects with
different ethnic/racial backgrounds and by different types of data. Here we
make use of the REST-meta-MDD, a large scale resting-state fMRI dataset
collected from multiple cohort participants in China. We develop a stacking
machine learning model based on 1101 healthy controls, which estimates a
subject's chronological age from fMRI with promising accuracy. The trained
model is then applied to 1276 MDD patients from 24 sites. We observe that MDD
patients exhibit a $+4.43$ years ($\text{$p$} < 0.0001$, $\text{Cohen's $d$} =
0.35$, $\text{95\% CI}:1.86 - 3.91$) higher brain-predicted age difference
(brain-PAD) compared to controls. In the MDD subgroup, we observe a
statistically significant $+2.09$ years ($\text{$p$} < 0.05$, $\text{Cohen's
$d$} = 0.134483$) brain-PAD in antidepressant users compared to medication-free
patients. The statistical relationship observed is further checked by three
different machine learning algorithms. The positive brain-PAD observed in
participants in China confirms the presence of accelerated brain aging in MDD
patients. The utilization of functional brain connectivity for age estimation
verifies existing findings from a new dimension.
Related papers
- Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Robust Brain Age Estimation via Regression Models and MRI-derived
Features [2.028990630951476]
We present a novel brain age estimation framework using the Open Big Healthy Brain (OpenBHB) dataset.
Our approach integrates three different MRI-derived region-wise features and different regression models, resulting in a highly accurate brain age estimation.
arXiv Detail & Related papers (2023-06-08T19:07:22Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
Brain magnetic resonance imaging (MRI) of infants demonstrates a specific pattern of development beyond myelination.
With no standardized criteria, visual estimation of the structural maturity of the brain from MRI before three years of age remains dominated by inter-observer and intra-observer variability.
We explore the general feasibility to tackle this task, and the utility of different approaches, including two- and three-dimensional convolutional neural networks (CNN)
In the best performing approach, we achieved an accuracy of 0.90 [95% CI:0.86-0.94] using a 2D CNN on a central axial thick slab.
arXiv Detail & Related papers (2021-12-27T18:02:48Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.