論文の概要: Hyperparameter optimization of hybrid quantum neural networks for car
classification
- arxiv url: http://arxiv.org/abs/2205.04878v1
- Date: Tue, 10 May 2022 13:25:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-14 14:28:50.170929
- Title: Hyperparameter optimization of hybrid quantum neural networks for car
classification
- Title(参考訳): 車種分類のためのハイブリッド量子ニューラルネットワークのハイパーパラメータ最適化
- Authors: Asel Sagingalieva, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov,
Michael Perelshtein, Alexey Melnikov, Andrea Skolik, David Von Dollen
- Abstract要約: 本稿では,量子インスパイアされたハイパーパラメータ最適化手法と,教師あり学習のためのハイブリッド量子古典機械学習モデルを提案する。
カーイメージ分類タスクにおいて、我々のアプローチを検証し、ハイブリッド量子ニューラルネットワークモデルの完全な実装を実演する。
分類精度0.97は18イテレーションの後にハイブリッドモデルにより得られたが、古典モデルは75イテレーションの後に0.92の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image recognition is one of the primary applications of machine learning
algorithms. Nevertheless, machine learning models used in modern image
recognition systems consist of millions of parameters that usually require
significant computational time to be adjusted. Moreover, adjustment of model
hyperparameters leads to additional overhead. Because of this, new developments
in machine learning models and hyperparameter optimization techniques are
required. This paper presents a quantum-inspired hyperparameter optimization
technique and a hybrid quantum-classical machine learning model for supervised
learning. We benchmark our hyperparameter optimization method over standard
black-box objective functions and observe performance improvements in the form
of reduced expected run times and fitness in response to the growth in the size
of the search space. We test our approaches in a car image classification task,
and demonstrate a full-scale implementation of the hybrid quantum neural
network model with the tensor train hyperparameter optimization. Our tests show
a qualitative and quantitative advantage over the corresponding standard
classical tabular grid search approach used with a deep neural network
ResNet34. A classification accuracy of 0.97 was obtained by the hybrid model
after 18 iterations, whereas the classical model achieved an accuracy of 0.92
after 75 iterations.
- Abstract(参考訳): 画像認識は機械学習アルゴリズムの主要な応用の1つである。
それでも、現代の画像認識システムで使用される機械学習モデルは、調整にかなりの計算時間を必要とする数百万のパラメータで構成されている。
さらに、モデルハイパーパラメータの調整は、さらなるオーバーヘッドをもたらす。
このため、機械学習モデルとハイパーパラメータ最適化技術の新しい開発が必要である。
本稿では,量子インスパイアされたハイパーパラメータ最適化手法と,教師付き学習のためのハイブリッド量子古典機械学習モデルを提案する。
我々は,標準ブラックボックスの目標関数に対してハイパーパラメータ最適化手法をベンチマークし,探索空間の大きさの増大に応じて,予測実行時間と適合度を削減した形での性能改善を観察する。
我々は,車載画像分類タスクにおけるアプローチを検証し,テンソルトレインハイパーパラメータ最適化を用いたハイブリッド量子ニューラルネットワークモデルの実装を実演する。
実験では,ニューラルネットワークResNet34で使用する標準標準のグラフグリッド探索手法に対して,定性的かつ定量的な優位性を示した。
分類精度0.97は18イテレーション後にハイブリッドモデルにより得られたが、古典モデルは75イテレーション後に0.92の精度を達成した。
- 全文 参考訳へのリンク
関連論文リスト
- Hyperparameter Optimization with Neural Network Pruning [6.193231258199234]
ハイパーパラメータ最適化に用いるニューラルネットワーク(N_B)のプロキシモデルを提案する。
提案されたフレームワークは、最大37%の時間を削減することができる。
論文 参考訳(メタデータ) (2022-05-18T02:51:47Z) - Learning the Effect of Registration Hyperparameters with HyperMorph [7.313453912494172]
我々は,学習に基づく変形可能な画像登録において,効率的なハイパーパラメータチューニングを容易にするHyperMorphを紹介した。
本研究では,高速かつ高分解能なハイパーパラメータ探索を実現することで,従来の手法の非効率性を低減できることを示す。
論文 参考訳(メタデータ) (2022-03-30T21:30:06Z) - AdaGrid: Adaptive Grid Search for Link Prediction Training Objective [58.79804082133998]
トレーニングの目的は、モデルの性能と一般化能力に決定的に影響を及ぼす。
本稿では,訓練中にエッジメッセージの比率を動的に調整する適応グリッド探索(AdaGrid)を提案する。
AdaGridは、完全検索の9倍の時間効率を保ちながら、モデルの性能を1.9%まで向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-30T09:24:17Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Hyper-parameter optimization based on soft actor critic and hierarchical
mixture regularization [5.063728016437489]
我々はマルコフ決定プロセスとしてハイパーパラメータ最適化プロセスをモデル化し、強化学習でそれに取り組む。
ソフトアクター評論家と階層混合正規化に基づく新しいハイパーパラメータ最適化法が提案されている。
論文 参考訳(メタデータ) (2021-12-08T02:34:43Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
我々は,新しいHPO法を導入し,畳み込みネットワークの中間層の低ランク因子分解を用いて解析応答面を定義する方法について検討する。
我々は,この表面がモデル性能の代理としてどのように振る舞うかを定量化し,オートHyperと呼ぶ信頼領域探索アルゴリズムを用いて解くことができる。
論文 参考訳(メタデータ) (2021-11-28T05:27:34Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
models [0.4079265319364249]
現在の最先端の方法は、ランダムフォレストまたはガウスプロセスを利用してサーロゲートモデルを構築しています。
勾配向上に基づく新しいサロゲートモデルを提案する。
実験により,新しい手法は,ある程度の分類問題に対して,最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2021-01-06T22:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。