Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO
via Fixed Point Networks
- URL: http://arxiv.org/abs/2205.04944v1
- Date: Tue, 10 May 2022 14:57:56 GMT
- Title: Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO
via Fixed Point Networks
- Authors: Wentao Yu, Yifei Shen, Hengtao He, Xianghao Yu, Jun Zhang, and Khaled
B. Letaief
- Abstract summary: Terahertz ultra-massive multiple-input multiple-output (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless systems.
We develop an efficient deep learning based channel estimator with adaptive complexity and linear convergence guarantee.
A major algorithmic innovation involves applying fixed point to compute the channel estimate while modeling neural networks with arbitrary depth and adapting to the hybrid-field channel conditions.
- Score: 15.498866529344275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terahertz ultra-massive multiple-input multiple-output (THz UM-MIMO) is
envisioned as one of the key enablers of 6G wireless systems. Due to the joint
effect of its large array aperture and small wavelength, the near-field region
of THz UM-MIMO systems is greatly enlarged. The high-dimensional channel of
such systems thus consists of a stochastic mixture of far and near fields,
which renders channel estimation extremely challenging. Previous works based on
uni-field assumptions cannot capture the hybrid far- and near-field features,
and will suffer significant performance loss. This motivates us to consider
hybrid-field channel estimation. We draw inspirations from fixed point theory
to develop an efficient deep learning based channel estimator with adaptive
complexity and linear convergence guarantee. Built upon classic orthogonal
approximate message passing, we transform each iteration into a contractive
mapping, comprising a closed-form linear estimator and a neural network based
non-linear estimator. A major algorithmic innovation involves applying fixed
point iteration to compute the channel estimate while modeling neural networks
with arbitrary depth and adapting to the hybrid-field channel conditions.
Simulation results will verify our theoretical analysis and show significant
performance gains over state-of-the-art approaches in the estimation accuracy
and convergence rate.
Related papers
- Hybrid Knowledge-Data Driven Channel Semantic Acquisition and
Beamforming for Cell-Free Massive MIMO [6.010360758759109]
This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications.
We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2023-07-06T15:35:55Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
This paper proposes a convolutional neural network based approach to estimate the channel for millimeter wave (mmWave) systems built on a hybrid architecture.
A coarse estimation of the channel is first made from the received signal.
Numerical illustrations show that the proposed method outperforms least square (LS) estimate, minimum mean square error (MMSE) estimate and are close to the Cramer-Rao Bound (CRB)
arXiv Detail & Related papers (2021-08-01T05:33:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
It is well-known problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks.
We propose a novel deep learning based paper algorithm to address this problem.
arXiv Detail & Related papers (2020-11-08T12:48:06Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.