論文の概要: Regression-based projection for learning Mori--Zwanzig operators
- arxiv url: http://arxiv.org/abs/2205.05135v1
- Date: Tue, 10 May 2022 19:35:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:54:52.984379
- Title: Regression-based projection for learning Mori--Zwanzig operators
- Title(参考訳): 森学習のための回帰に基づく予測--Zwanzig演算子
- Authors: Yen Ting Lin, Yifeng Tian, Daniel Livescu
- Abstract要約: 本稿では,任意の回帰モデルに対してマルコフとメモリ演算子を抽出するアルゴリズムを提案する。
本稿では,森プロジェクション演算子に基づく最近提案されたデータ駆動学習アルゴリズムにおける線形回帰結果の選択について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose to adopt statistical regression as the projection operator to
enable data-driven learning of the operators in the Mori--Zwanzig formalism. We
present a principled algorithm to extract the Markov and memory operators for
any regression models. We show that the choice of linear regression results in
a recently proposed data-driven learning algorithm based on Mori's projection
operator, which can be considered as a higher-order approximate Koopman
learning method. We show that more expressive, potentially nonlinear regression
models naturally fill in the gap between the highly idealized and
computationally efficient Mori's projection operator and the most optimal yet
computationally infeasible Zwanzig projection operator. We performed numerical
experiments and extracted the operators for an array of regression-based
projections, including linear, polynomial, spline, and neural-network-based
regression, showing a progressive improvement as the complexity of the
regression model increased. Our proposition provides a general framework to
extract memory-dependent corrections and can be readily applied to an array of
data-driven learning methods for stationary dynamical systems in the
literature.
- Abstract(参考訳): 本研究では,統計回帰を射影演算子として採用し,森-ツワンジヒ形式における演算子のデータ駆動学習を可能にする。
本稿では,任意の回帰モデルに対してマルコフとメモリ演算子を抽出するアルゴリズムを提案する。
本稿では,森プロジェクション演算子に基づく最近提案されたデータ駆動学習アルゴリズムにおける線形回帰結果の選択を,高次近似クープマン学習法とみなすことができることを示す。
より表現的、潜在的に非線形回帰モデルは、高度に理想化され、計算効率のよいモリの射影作用素と、最も最適だが計算不能なズワンツィヒ射影作用素の間のギャップを自然に埋めることを示す。
本研究では, 線形, 多項式, スプライン, ニューラルネットベース回帰を含む回帰モデルに対する数値実験を行い, 回帰モデルの複雑さが増大するにつれて, 漸進的な改善が見られた。
本提案は,メモリ依存の修正を抽出できる汎用フレームワークを提供し,定常力学系のためのデータ駆動学習手法を文献に容易に適用できる。
関連論文リスト
- Efficient and Generalizable Certified Unlearning: A Hessian-free Recollection Approach [8.875278412741695]
機械学習は、特定のデータを選択的に忘れることを可能にして、データ所有者の権利を忘れないように努力する。
我々は,ベクトル加算操作のみを必要とするため,ほぼ瞬時に未学習を実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-04-02T07:54:18Z) - Meta-Learning with Generalized Ridge Regression: High-dimensional Asymptotics, Optimality and Hyper-covariance Estimation [14.194212772887699]
本研究では,高次元ランダム効果線形モデルの枠組みにおけるメタラーニングについて考察する。
本研究では,データ次元がタスク毎のサンプル数に比例して大きくなる場合に,新しいテストタスクに対する予測リスクの正確な振る舞いを示す。
トレーニングタスクのデータに基づいて,逆回帰係数を推定する手法を提案し,解析する。
論文 参考訳(メタデータ) (2024-03-27T21:18:43Z) - Representation Transfer Learning via Multiple Pre-trained models for
Linear Regression [3.5788754401889014]
サンプルが少ないデータ領域(ターゲット)で線形回帰モデルを学習する問題を考察する。
学習を支援するために、私たちは、潜在的に異なるデータドメインでトレーニングされた事前訓練された回帰モデルセットを提供しています。
対象モデルを構築するための表現伝達に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-25T19:35:24Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - ResMem: Learn what you can and memorize the rest [79.19649788662511]
本稿では,既存の予測モデルを拡張するための残差記憶アルゴリズム(ResMem)を提案する。
構築によって、ResMemはトレーニングラベルを明示的に記憶することができる。
ResMemは、元の予測モデルのテストセットの一般化を一貫して改善することを示す。
論文 参考訳(メタデータ) (2023-02-03T07:12:55Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Near-optimal Offline Reinforcement Learning with Linear Representation:
Leveraging Variance Information with Pessimism [65.46524775457928]
オフライン強化学習は、オフライン/歴史的データを活用して、シーケンシャルな意思決定戦略を最適化しようとしている。
線形モデル表現を用いたオフライン強化学習の統計的限界について検討する。
論文 参考訳(メタデータ) (2022-03-11T09:00:12Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。