RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization
- URL: http://arxiv.org/abs/2311.01753v2
- Date: Thu, 21 Mar 2024 12:36:22 GMT
- Title: RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization
- Authors: Siqi Shen, Chennan Ma, Chao Li, Weiquan Liu, Yongquan Fu, Songzhu Mei, Xinwang Liu, Cheng Wang,
- Abstract summary: We introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles.
We show that RiskQ can obtain promising performance through extensive experiments.
- Score: 49.26510528455664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent systems are characterized by environmental uncertainty, varying policies of agents, and partial observability, which result in significant risks. In the context of Multi-Agent Reinforcement Learning (MARL), learning coordinated and decentralized policies that are sensitive to risk is challenging. To formulate the coordination requirements in risk-sensitive MARL, we introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles. This principle requires that the collection of risk-sensitive action selections of each agent should be equivalent to the risk-sensitive action selection of the central policy. Current MARL value factorization methods do not satisfy the RIGM principle for common risk metrics such as the Value at Risk (VaR) metric or distorted risk measurements. Therefore, we propose RiskQ to address this limitation, which models the joint return distribution by modeling quantiles of it as weighted quantile mixtures of per-agent return distribution utilities. RiskQ satisfies the RIGM principle for the VaR and distorted risk metrics. We show that RiskQ can obtain promising performance through extensive experiments. The source code of RiskQ is available in https://github.com/xmu-rl-3dv/RiskQ.
Related papers
- Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to
Standard RL [48.1726560631463]
We study Risk-Sensitive Reinforcement Learning with the Optimized Certainty Equivalent (OCE) risk.
We propose two general meta-algorithms via reductions to standard RL.
We show that it learns the optimal risk-sensitive policy while prior algorithms provably fail.
arXiv Detail & Related papers (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Risk-Sensitive Multi-Agent Reinforcement Learning in Network Aggregative
Markov Games [2.85386288555414]
We propose a distributed sampling-based actor-critic (AC) algorithm with CPT risk for network aggregative games (NAMGs)
Under a set of assumptions, we prove to a subjective notion of perfect Nash equilibrium in NAMGs.
Experiments show that subjective policies can be different from the risk-neutral ones.
arXiv Detail & Related papers (2024-02-08T18:43:27Z) - C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models [57.10361282229501]
We propose C-RAG, the first framework to certify generation risks for RAG models.
Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks.
We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial.
arXiv Detail & Related papers (2024-02-05T16:46:16Z) - Policy Evaluation in Distributional LQR [70.63903506291383]
We provide a closed-form expression of the distribution of the random return.
We show that this distribution can be approximated by a finite number of random variables.
Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR.
arXiv Detail & Related papers (2023-03-23T20:27:40Z) - Risk-Averse Reinforcement Learning via Dynamic Time-Consistent Risk
Measures [10.221369785560785]
In this paper, we consider the problem of maximizing dynamic risk of a sequence of rewards in Markov Decision Processes (MDPs)
Using a convex combination of expectation and conditional value-at-risk (CVaR) as a special one-step conditional risk measure, we reformulate the risk-averse MDP as a risk-neutral counterpart with augmented action space and manipulation on the immediate rewards.
Our numerical studies show that the risk-averse setting can reduce the variance and enhance robustness of the results.
arXiv Detail & Related papers (2023-01-14T21:43:18Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Sample-Based Bounds for Coherent Risk Measures: Applications to Policy
Synthesis and Verification [32.9142708692264]
This paper aims to address a few problems regarding risk-aware verification and policy synthesis.
First, we develop a sample-based method to evaluate a subset of a random variable distribution.
Second, we develop a robotic-based method to determine solutions to problems that outperform a large fraction of the decision space.
arXiv Detail & Related papers (2022-04-21T01:06:10Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
The use of Reinforcement Learning (RL) agents in practical applications requires the consideration of suboptimal outcomes.
This is especially important in safety-critical environments, where errors can lead to high costs or damage.
We show reduced failure rates by up to a factor of 7 and improved generalization performance by up to 14% compared to both risk-aware and risk-agnostic agents.
arXiv Detail & Related papers (2021-06-11T11:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.