Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook
- URL: http://arxiv.org/abs/2205.05173v5
- Date: Tue, 23 Jan 2024 06:25:31 GMT
- Title: Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook
- Authors: Hadi Hojjati, Thi Kieu Khanh Ho, Narges Armanfard
- Abstract summary: Anomaly detection plays a crucial role in various domains, including cybersecurity, finance, and healthcare.
In recent years, significant progress has been made in this field due to the remarkable growth of deep learning models.
The advent of self-supervised learning has sparked the development of novel AD algorithms that outperform the existing state-of-the-art approaches.
- Score: 9.85256783464329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection (AD) plays a crucial role in various domains, including
cybersecurity, finance, and healthcare, by identifying patterns or events that
deviate from normal behaviour. In recent years, significant progress has been
made in this field due to the remarkable growth of deep learning models.
Notably, the advent of self-supervised learning has sparked the development of
novel AD algorithms that outperform the existing state-of-the-art approaches by
a considerable margin. This paper aims to provide a comprehensive review of the
current methodologies in self-supervised anomaly detection. We present
technical details of the standard methods and discuss their strengths and
drawbacks. We also compare the performance of these models against each other
and other state-of-the-art anomaly detection models. Finally, the paper
concludes with a discussion of future directions for self-supervised anomaly
detection, including the development of more effective and efficient algorithms
and the integration of these techniques with other related fields, such as
multi-modal learning.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
Graph anomaly detection (GAD) aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs)
Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD.
arXiv Detail & Related papers (2024-09-16T03:05:11Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos.
In the era of deep learning, a great variety of deep learning based methods are constantly emerging for the VAD task.
This review covers the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD.
arXiv Detail & Related papers (2024-09-09T07:31:16Z) - Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
Time-series anomaly detection plays an important role in engineering processes.
This survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made.
It presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Large Language Models for Forecasting and Anomaly Detection: A
Systematic Literature Review [10.325003320290547]
This systematic literature review comprehensively examines the application of Large Language Models (LLMs) in forecasting and anomaly detection.
LLMs have demonstrated significant potential in parsing and analyzing extensive datasets to identify patterns, predict future events, and detect anomalous behavior across various domains.
This review identifies several critical challenges that impede their broader adoption and effectiveness, including the reliance on vast historical datasets, issues with generalizability across different contexts, and the phenomenon of model hallucinations.
arXiv Detail & Related papers (2024-02-15T22:43:02Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
Masked modeling has emerged as a distinctive approach that involves predicting parts of the original data that are proportionally masked during training.
We elaborate on the details of techniques within masked modeling, including diverse masking strategies, recovering targets, network architectures, and more.
We conclude by discussing the limitations of current techniques and point out several potential avenues for advancing masked modeling research.
arXiv Detail & Related papers (2023-12-31T12:03:21Z) - Deep Anomaly Detection in Text [3.4265828682659705]
This thesis aims to develop a method for detecting anomalies by exploiting pretext tasks tailored for text corpora.
This approach greatly improves the state-of-the-art on two datasets, 20Newsgroups, and AG News, for both semi-supervised and unsupervised anomaly detection.
arXiv Detail & Related papers (2023-12-14T22:04:43Z) - The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing [0.043512163406552]
This study introduces a novel method called "The Fairness Stitch" to enhance fairness in deep learning models.
We conduct a comprehensive evaluation of two well-known datasets, CelebA and UTKFace.
Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance.
arXiv Detail & Related papers (2023-11-06T21:14:37Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - A Unifying Review of Deep and Shallow Anomaly Detection [38.202998314502786]
We aim to identify the common underlying principles as well as the assumptions that are often made implicitly by various methods.
We provide an empirical assessment of major existing methods that is enriched by the use of recent explainability techniques.
We outline critical open challenges and identify specific paths for future research in anomaly detection.
arXiv Detail & Related papers (2020-09-24T14:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.