Hierarchical Collaborative Hyper-parameter Tuning
- URL: http://arxiv.org/abs/2205.05272v1
- Date: Wed, 11 May 2022 05:16:57 GMT
- Title: Hierarchical Collaborative Hyper-parameter Tuning
- Authors: Ahmad Esmaeili, Zahra Ghorrati, Eric Matson
- Abstract summary: Hyper- parameter tuning is among the most critical stages in building machine learning solutions.
This paper demonstrates how multi-agent systems can be utilized to develop a distributed technique for determining near-optimal values.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyper-parameter Tuning is among the most critical stages in building machine
learning solutions. This paper demonstrates how multi-agent systems can be
utilized to develop a distributed technique for determining near-optimal values
for any arbitrary set of hyper-parameters in a machine learning model. The
proposed method employs a distributedly formed hierarchical agent-based
architecture for the cooperative searching procedure of tuning hyper-parameter
values. The presented generic model is used to develop a guided randomized
agent-based tuning technique, and its behavior is investigated in both machine
learning and global function optimization applications. According the empirical
results, the proposed model outperformed both of its underlying randomized
tuning strategies in terms of classification error and function evaluations,
notably in higher number of dimensions.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - A Comparative Study of Hyperparameter Tuning Methods [0.0]
Tree-structured Parzen Estimator (TPE), Genetic Search, and Random Search are evaluated across regression and classification tasks.
Random Search excelled in regression tasks, while TPE was more effective for classification tasks.
arXiv Detail & Related papers (2024-08-29T10:35:07Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Optimizing model-agnostic Random Subspace ensembles [5.680512932725364]
We present a model-agnostic ensemble approach for supervised learning.
The proposed approach alternates between learning an ensemble of models using a parametric version of the Random Subspace approach.
We show the good performance of the proposed approach, both in terms of prediction and feature ranking, on simulated and real-world datasets.
arXiv Detail & Related papers (2021-09-07T13:58:23Z) - Experimental Investigation and Evaluation of Model-based Hyperparameter
Optimization [0.3058685580689604]
This article presents an overview of theoretical and practical results for popular machine learning algorithms.
The R package mlr is used as a uniform interface to the machine learning models.
arXiv Detail & Related papers (2021-07-19T11:37:37Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.