論文の概要: Scene Consistency Representation Learning for Video Scene Segmentation
- arxiv url: http://arxiv.org/abs/2205.05487v1
- Date: Wed, 11 May 2022 13:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 01:23:39.456648
- Title: Scene Consistency Representation Learning for Video Scene Segmentation
- Title(参考訳): 映像シーンセグメンテーションのためのシーン一貫性表現学習
- Authors: Haoqian Wu, Keyu Chen, Yanan Luo, Ruizhi Qiao, Bo Ren, Haozhe Liu,
Weicheng Xie, Linlin Shen
- Abstract要約: 本稿では,長期ビデオからより優れたショット表現を学習するための,効果的な自己監視学習(SSL)フレームワークを提案する。
本稿では,シーンの一貫性を実現するためのSSLスキームを提案するとともに,モデルの一般化性を高めるためのデータ拡張とシャッフル手法について検討する。
本手法は,映像シーンのタスクにおける最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 26.790491577584366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A long-term video, such as a movie or TV show, is composed of various scenes,
each of which represents a series of shots sharing the same semantic story.
Spotting the correct scene boundary from the long-term video is a challenging
task, since a model must understand the storyline of the video to figure out
where a scene starts and ends. To this end, we propose an effective
Self-Supervised Learning (SSL) framework to learn better shot representations
from unlabeled long-term videos. More specifically, we present an SSL scheme to
achieve scene consistency, while exploring considerable data augmentation and
shuffling methods to boost the model generalizability. Instead of explicitly
learning the scene boundary features as in the previous methods, we introduce a
vanilla temporal model with less inductive bias to verify the quality of the
shot features. Our method achieves the state-of-the-art performance on the task
of Video Scene Segmentation. Additionally, we suggest a more fair and
reasonable benchmark to evaluate the performance of Video Scene Segmentation
methods. The code is made available.
- Abstract(参考訳): 映画やテレビ番組のような長期ビデオは様々なシーンで構成されており、それぞれが同じ意味のストーリーを共有する一連のショットを表している。
モデルがビデオのストーリーラインを理解して、シーンの開始と終了の場所を理解する必要があるため、長期的なビデオから適切なシーン境界を見つけることは難しい作業である。
そこで本稿では,ラベルのない長期ビデオからより優れたショット表現を学習するための,効果的な自己監視学習(SSL)フレームワークを提案する。
具体的には,シーンの一貫性を実現するためのSSLスキームを提案するとともに,モデルの一般化性を高めるためのデータ拡張とシャッフル手法を提案する。
先行手法のようにシーン境界特徴を明示的に学習する代わりに,ショット特徴の品質を検証するために,帰納的バイアスの少ないバニラ時間モデルを導入する。
本手法は,映像シーンセグメンテーションのタスクにおける最先端性能を実現する。
さらに,映像シーンセグメンテーション手法の性能を評価するための,より公平で合理的なベンチマークを提案する。
コードは利用可能である。
関連論文リスト
- Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
ビデオの高密度キャプションを生成するための,効率的なオンライン手法を提案する。
我々のモデルは、新しい自己回帰因子化復号化アーキテクチャを使用している。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
論文 参考訳(メタデータ) (2024-11-22T02:46:44Z) - Contrastive Sequential-Diffusion Learning: Non-linear and Multi-Scene Instructional Video Synthesis [9.687215124767063]
本稿では,最も適切なシーンを選択して,次のシーンの復調過程をガイドし,条件付けするコントラッシブ・シーケンシャルな映像拡散手法を提案する。
実世界のアクション中心のデータを用いた実験は、これまでの作業と比べて、モデルの実用性と一貫性の向上を実証している。
論文 参考訳(メタデータ) (2024-07-16T15:03:05Z) - Multi-Modal Domain Adaptation Across Video Scenes for Temporal Video
Grounding [59.599378814835205]
時間的ビデオグラウンドリング(TVG)は、与えられた言語クエリに基づいて、特定のセグメントの時間的境界を未トリミングビデオにローカライズすることを目的としている。
そこで本研究では,対象データからの洞察を取り入れた新たなAMDA手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T07:49:27Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
本稿では、生成遷移と予測に焦点をあてた、短時間から長期のビデオ拡散モデルSEINEを提案する。
テキスト記述に基づく遷移を自動的に生成するランダムマスクビデオ拡散モデルを提案する。
我々のモデルは、コヒーレンスと視覚的品質を保証するトランジションビデオを生成する。
論文 参考訳(メタデータ) (2023-10-31T17:58:17Z) - Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for
Long-form Video Understanding [57.917616284917756]
実世界のビデオは、しばしば数分間の長さであり、意味的に一貫した長さのセグメントがある。
長いビデオを処理するための一般的なアプローチは、一定時間の長さの一様にサンプリングされたクリップにショートフォームビデオモデルを適用することである。
このアプローチは、固定長のクリップがしばしば冗長または非形式的であるため、長いビデオの基本的な性質を無視する。
論文 参考訳(メタデータ) (2023-09-20T18:13:32Z) - HierVL: Learning Hierarchical Video-Language Embeddings [108.77600799637172]
HierVLは階層的なビデオ言語埋め込みであり、長期および短期の関連を同時に扱う。
クリップレベルとビデオレベルの両方でテキストと視覚のアライメントを促進する階層的なコントラストトレーニングの目標を導入する。
我々の階層的スキームは、SotAを達成した長期的なビデオ表現と同様に、その単一レベルよりも優れたクリップ表現をもたらす。
論文 参考訳(メタデータ) (2023-01-05T21:53:19Z) - Frame-wise Action Representations for Long Videos via Sequence
Contrastive Learning [44.412145665354736]
本稿では,フレームワイドな行動表現を学習するための,新しいコントラッシブな行動表現学習フレームワークを提案する。
自己教師型学習の最近の進歩に触発されて,2つの相関する視点に適用した新しいシーケンス・コントラッシブ・ロス(SCL)を提案する。
提案手法は,映像アライメントや細かなフレーム検索作業において,優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-28T17:59:54Z) - Boundary-aware Self-supervised Learning for Video Scene Segmentation [20.713635723315527]
シーンセグメンテーション(英: Video scene segmentation)は、ビデオ内のシーン境界を時間的に局所化するタスクである。
本稿では,3つの境界対応プレテキストタスク,ショットシーンマッチング,コンテキストグループマッチング,擬似境界予測を紹介する。
我々はMovieNet-SSegベンチマークの最先端性を実現する。
論文 参考訳(メタデータ) (2022-01-14T02:14:07Z) - A Local-to-Global Approach to Multi-modal Movie Scene Segmentation [95.34033481442353]
我々は、150本の映画から21Kの注釈付きシーンセグメントを含む大規模なビデオデータセット、MovieScenesを構築した。
本稿では,クリップ,セグメント,映画の3段階にわたるマルチモーダル情報を統合するローカル・グローバルシーンセグメンテーションフレームワークを提案する。
実験の結果,提案するネットワークは,映画を高い精度でシーンに分割し,従来手法より一貫した性能を発揮することがわかった。
論文 参考訳(メタデータ) (2020-04-06T13:58:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。