論文の概要: Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning
- arxiv url: http://arxiv.org/abs/2411.14688v1
- Date: Fri, 22 Nov 2024 02:46:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:39.147334
- Title: Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning
- Title(参考訳): オンラインのDenseビデオキャプションのための自動回帰デコーディング
- Authors: AJ Piergiovanni, Dahun Kim, Michael S. Ryoo, Isaac Noble, Anelia Angelova,
- Abstract要約: ビデオの高密度キャプションを生成するための,効率的なオンライン手法を提案する。
我々のモデルは、新しい自己回帰因子化復号化アーキテクチャを使用している。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
- 参考スコア(独自算出の注目度): 71.94122309290537
- License:
- Abstract: Generating automatic dense captions for videos that accurately describe their contents remains a challenging area of research. Most current models require processing the entire video at once. Instead, we propose an efficient, online approach which outputs frequent, detailed and temporally aligned captions, without access to future frames. Our model uses a novel autoregressive factorized decoding architecture, which models the sequence of visual features for each time segment, outputting localized descriptions and efficiently leverages the context from the previous video segments. This allows the model to output frequent, detailed captions to more comprehensively describe the video, according to its actual local content, rather than mimic the training data. Second, we propose an optimization for efficient training and inference, which enables scaling to longer videos. Our approach shows excellent performance compared to both offline and online methods, and uses 20\% less compute. The annotations produced are much more comprehensive and frequent, and can further be utilized in automatic video tagging and in large-scale video data harvesting.
- Abstract(参考訳): コンテンツを正確に記述したビデオの自動的な高密度キャプションを生成することは、依然として困難な研究分野である。
現在のモデルでは、ビデオ全体を一度に処理する必要がある。
代わりに、我々は、将来的なフレームにアクセスすることなく、頻繁で詳細かつ時間的に整列したキャプションを出力する効率的なオンラインアプローチを提案する。
我々のモデルは,時間セグメントごとの視覚的特徴のシーケンスをモデル化し,局所的な記述を出力し,前のビデオセグメントのコンテキストを効率的に活用する,新しい自己回帰因子化復号アーキテクチャを用いている。
これにより、トレーニングデータを模倣するのではなく、実際のローカルコンテンツに従って、頻繁に詳細なキャプションを出力することで、ビデオをより包括的に記述することができる。
第二に、より長いビデオにスケールできる効率的なトレーニングと推論の最適化を提案する。
提案手法は,オフライン手法とオンライン手法の両方と比較して優れた性能を示し,計算コストを20%削減する。
生成されたアノテーションはより包括的で頻繁であり、自動ビデオタグ付けや大規模ビデオデータの収集にも利用できる。
関連論文リスト
- Streaming Dense Video Captioning [85.70265343236687]
濃密なビデオキャプションのための理想的なモデルは、長い入力ビデオを扱うことができ、リッチで詳細なテキスト記述を予測できる。
現在の最先端モデルは、一定の数のダウンサンプルフレームを処理し、ビデオ全体を見た後、単一の完全な予測を行う。
本稿では,2つの新しいコンポーネントからなるストリーミング高密度動画キャプションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T17:59:15Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment [10.567291051485194]
ゼロショット方式で高密度映像キャプションを行う新しい手法であるZeroTAを提案する。
テスト時に各入力ビデオ内のイベントをローカライズし,記述する。
論文 参考訳(メタデータ) (2023-07-05T23:01:26Z) - Video Generation Beyond a Single Clip [76.5306434379088]
ビデオ生成モデルは、実際のビデオの長さと比較して比較的短いビデオクリップしか生成できない。
多様なコンテンツや複数のイベントをカバーした長いビデオを生成するために,ビデオ生成プロセスを制御するための追加のガイダンスを提案する。
提案手法は、固定時間ウィンドウ内でリアルな映像を生成することに焦点を当てた、既存の映像生成の取り組みを補完するものである。
論文 参考訳(メタデータ) (2023-04-15T06:17:30Z) - SwinBERT: End-to-End Transformers with Sparse Attention for Video
Captioning [40.556222166309524]
ビデオキャプションのためのエンドツーエンドトランスフォーマーモデルであるSwinBERTを提案する。
提案手法では,ビデオ入力の可変長に適応可能な空間時間表現を符号化するために,ビデオトランスフォーマを採用している。
このモデルアーキテクチャに基づいて,より密集したビデオフレームの映像キャプションが有用であることを示す。
論文 参考訳(メタデータ) (2021-11-25T18:02:12Z) - Beyond Short Clips: End-to-End Video-Level Learning with Collaborative
Memories [56.91664227337115]
本稿では,ビデオの複数のサンプルクリップにまたがる情報を,トレーニングイテレーション毎にエンコードするコラボレーティブメモリ機構を提案する。
これにより、単一のクリップ以上の長距離依存関係の学習が可能になる。
提案するフレームワークはエンドツーエンドでトレーニング可能で,計算オーバーヘッドが無視できないビデオ分類精度が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-02T18:59:09Z) - Less is More: ClipBERT for Video-and-Language Learning via Sparse
Sampling [98.41300980759577]
ビデオと言語の学習に対する標準的なアプローチは、オフラインで抽出された高密度ビデオ機能から学習するニューラルネットワークを規定する。
本稿では,ビデオ・言語タスクに対して,手頃なエンドツーエンド学習を可能にする汎用フレームワークClipBERTを提案する。
6つのデータセットにおけるテキスト・ビデオ検索とビデオ質問応答の実験は、ClipBERTが既存の手法より優れていることを示した。
論文 参考訳(メタデータ) (2021-02-11T18:50:16Z) - Straight to the Point: Fast-forwarding Videos via Reinforcement Learning
Using Textual Data [1.004766879203303]
本稿では,指導ビデオの高速化を目的とした強化学習の定式化に基づく新しい手法を提案する。
本手法では,最終映像のギャップを生じさせることなく,情報伝達に関係のないフレームを適応的に選択できる。
本稿では,VDAN(Visually-Guided Document Attention Network)と呼ばれる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。