Blockchain-based Secure Client Selection in Federated Learning
- URL: http://arxiv.org/abs/2205.05611v1
- Date: Wed, 11 May 2022 16:28:12 GMT
- Title: Blockchain-based Secure Client Selection in Federated Learning
- Authors: Truc Nguyen, Phuc Thai, Tre' R. Jeter, Thang N. Dinh, My T. Thai
- Abstract summary: We use blockchain technology to propose a verifiable client selection protocol for Federated Learning.
Our protocol enforces a random selection of clients, making the server unable to control the selection process at its discretion.
We present security proofs showing that our protocol is secure against this attack.
- Score: 18.001794899303626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the great potential of Federated Learning (FL) in large-scale
distributed learning, the current system is still subject to several privacy
issues due to the fact that local models trained by clients are exposed to the
central server. Consequently, secure aggregation protocols for FL have been
developed to conceal the local models from the server. However, we show that,
by manipulating the client selection process, the server can circumvent the
secure aggregation to learn the local models of a victim client, indicating
that secure aggregation alone is inadequate for privacy protection. To tackle
this issue, we leverage blockchain technology to propose a verifiable client
selection protocol. Owing to the immutability and transparency of blockchain,
our proposed protocol enforces a random selection of clients, making the server
unable to control the selection process at its discretion. We present security
proofs showing that our protocol is secure against this attack. Additionally,
we conduct several experiments on an Ethereum-like blockchain to demonstrate
the feasibility and practicality of our solution.
Related papers
- Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.
Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning [17.45950557331482]
Federated learning enables the collaborative learning of a global model on diverse data, preserving data locality and eliminating the need to transfer user data to a central server.
Secure aggregation protocols are designed to mask/encrypt user updates and enable a central server to aggregate the masked information.
MicroSecAgg (PoPETS 2024) proposes a single server secure aggregation protocol that aims to mitigate the high communication complexity of the existing approaches.
arXiv Detail & Related papers (2024-10-13T00:06:03Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Security and Privacy Enhancing in Blockchain-based IoT Environments via Anonym Auditing [0.0]
We propose a novel framework that combines the decentralized nature of blockchain with advanced security protocols tailored for IoT contexts.
We outline the architecture of blockchain in IoT environments, emphasizing the workflow and specific security mechanisms employed.
We introduce a security protocol that integrates privacy-enhancing tools and anonymous auditing methods, including the use of advanced cryptographic techniques for anonymity.
arXiv Detail & Related papers (2024-03-03T01:09:43Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Robust and Actively Secure Serverless Collaborative Learning [48.01929996757643]
Collaborative machine learning (ML) is widely used to enable institutions to learn better models from distributed data.
While collaborative approaches to learning intuitively protect user data, they remain vulnerable to either the server, the clients, or both.
We propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients.
arXiv Detail & Related papers (2023-10-25T14:43:03Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
Federated learning is a distributed mechanism that trained large-scale neural network models with the participation of multiple clients.
With this feature, federated learning is considered a secure solution for data privacy issues.
We proposed the blockchain-based optimized client selection and privacy-preserved framework.
arXiv Detail & Related papers (2023-07-25T01:35:51Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
Privacy-preserving federated learning enables a population of distributed clients to jointly learn a shared model.
We present an efficient mechanism based on oblivious distributed differential privacy that is the first to protect against such client collusion.
We conclude with empirical analysis of the protocol's execution speed, learning accuracy, and privacy performance on two data sets.
arXiv Detail & Related papers (2022-02-20T19:52:53Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.