論文の概要: Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification
- arxiv url: http://arxiv.org/abs/2205.05646v1
- Date: Wed, 11 May 2022 17:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 16:47:15.699719
- Title: Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification
- Title(参考訳): Few-Shot Claim Veracity 分類におけるPairwise Semantic difference の集約
- Authors: Xia Zeng, Arkaitz Zubiaga
- Abstract要約: 本稿では,新しいベクトルベース手法であるSEEDを導入する。
クラス内のクレーム-エビデンス対の平均意味的差異を捉えるクラス代表ベクトルをシミュレートできるという仮説に基づいて構築する。
FEVERとSCIFACTデータセットで実施された実験では、数ショット設定で競合するベースラインよりも一貫した改善が見られた。
- 参考スコア(独自算出の注目度): 21.842139093124512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As part of an automated fact-checking pipeline, the claim veracity
classification task consists in determining if a claim is supported by an
associated piece of evidence. The complexity of gathering labelled
claim-evidence pairs leads to a scarcity of datasets, particularly when dealing
with new domains. In this paper, we introduce SEED, a novel vector-based method
to few-shot claim veracity classification that aggregates pairwise semantic
differences for claim-evidence pairs. We build on the hypothesis that we can
simulate class representative vectors that capture average semantic differences
for claim-evidence pairs in a class, which can then be used for classification
of new instances. We compare the performance of our method with competitive
baselines including fine-tuned BERT/RoBERTa models, as well as the
state-of-the-art few-shot veracity classification method that leverages
language model perplexity. Experiments conducted on the FEVER and SCIFACT
datasets show consistent improvements over competitive baselines in few-shot
settings. Our code is available.
- Abstract(参考訳): 自動ファクトチェックパイプラインの一部として、クレームの正確性分類タスクは、クレームが関連する証拠の一部によってサポートされているかどうかを判断する。
ラベル付きクレーム-エビデンスペアの収集の複雑さは、特に新しいドメインを扱う場合、データセットの不足につながる。
本稿では, クレーム・エビデンス・ペアのペアのセマンティックな差異を集約する, 数ショットのクレームの精度分類のためのベクトルベースの新しい手法SEEDを紹介する。
我々は、クラス内のクレーム-エビデンスペアの平均意味的差異をキャプチャするクラス代表ベクトルをシミュレートし、新しいインスタンスの分類に使用できるという仮説に基づいて構築する。
本手法の性能を,言語モデルのパープレキシティを活かした最先端の可逆性分類法と同様に,微調整されたbert/robertaモデルを含む競合ベースラインと比較した。
FEVERとSCIFACTデータセットで実施された実験は、数ショット設定で競合ベースラインよりも一貫して改善されている。
私たちのコードは利用可能です。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided
Relation Alignment and Adaptation [98.51938442785179]
増分的な数ショットセマンティックセマンティックセマンティクスは、セマンティクスセマンティクスモデルを新しいクラスに漸進的に拡張することを目的としている。
このタスクは、データ不均衡のため、ベースクラスと新しいクラスの間で深刻な意味認識の問題に直面します。
本稿では,従来の意味情報のガイダンスを完全に考慮した意味誘導型関係調整適応法を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:40:52Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
そこで本研究では,KNN(Kk$-nearest-neighbor)に基づく拡張分類検索手法を提案する。
分類と検索の共有表現がパフォーマンスを損なうことや,トレーニングの不安定化につながることが判明した。
本手法は,幅広い分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-03-23T06:33:06Z) - Few-Shot Object Detection via Variational Feature Aggregation [32.34871873486389]
本稿では,2つの新しい特徴集約方式を用いたメタラーニングフレームワークを提案する。
まず,クラス非依存アグリゲーション(CAA)手法を提案する。
次に、クラスレベルのサポート機能にサポート例をエンコードする変分特徴集約(VFA)手法を提案する。
論文 参考訳(メタデータ) (2023-01-31T04:58:21Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [18.481370450591317]
本稿では,2つの確率分布間の重なり関数に対する計算容易な上限を提案する。
提案した境界は、一級分類と領域シフト解析においてその値を示す。
私たちの研究は、重複ベースのメトリクスの応用を拡大する大きな可能性を示しています。
論文 参考訳(メタデータ) (2022-12-16T20:02:03Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Learning-From-Disagreement: A Model Comparison and Visual Analytics
Framework [21.055845469999532]
本稿では,2つの分類モデルを視覚的に比較するフレームワークを提案する。
具体的には、不一致のインスタンスから学ぶために差別者を訓練する。
我々は、訓練された識別器を、異なるメタ特徴のSHAP値で解釈する。
論文 参考訳(メタデータ) (2022-01-19T20:15:35Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。