論文の概要: An Upper Bound for the Distribution Overlap Index and Its Applications
- arxiv url: http://arxiv.org/abs/2212.08701v1
- Date: Fri, 16 Dec 2022 20:02:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 17:58:07.763269
- Title: An Upper Bound for the Distribution Overlap Index and Its Applications
- Title(参考訳): 分布オーバーラップ指数の上界とその応用
- Authors: Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami
- Abstract要約: 本稿では,2つの確率分布間の重なり関数に対する計算容易な上限を提案する。
提案した境界は、一級分類と領域シフト解析においてその値を示す。
私たちの研究は、重複ベースのメトリクスの応用を拡大する大きな可能性を示しています。
- 参考スコア(独自算出の注目度): 18.481370450591317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an easy-to-compute upper bound for the overlap index
between two probability distributions without requiring any knowledge of the
distribution models. The computation of our bound is time-efficient and
memory-efficient and only requires finite samples. The proposed bound shows its
value in one-class classification and domain shift analysis. Specifically, in
one-class classification, we build a novel one-class classifier by converting
the bound into a confidence score function. Unlike most one-class classifiers,
the training process is not needed for our classifier. Additionally, the
experimental results show that our classifier \textcolor{\colorname}{can be
accurate with} only a small number of in-class samples and outperforms many
state-of-the-art methods on various datasets in different one-class
classification scenarios. In domain shift analysis, we propose a theorem based
on our bound. The theorem is useful in detecting the existence of domain shift
and inferring data information. The detection and inference processes are both
computation-efficient and memory-efficient. Our work shows significant promise
toward broadening the applications of overlap-based metrics.
- Abstract(参考訳): 本稿では,分布モデルの知識を必要とせず,二つの確率分布間の重なり指数の計算容易な上限を提案する。
我々の限界の計算は時間効率とメモリ効率であり、有限サンプルしか必要としない。
提案する境界は,一クラス分類と領域シフト解析においてその値を示す。
具体的には、一級分類において、有界を信頼スコア関数に変換することによって、新しい一級分類器を構築する。
ほとんどの1クラス分類器とは異なり、分類器にはトレーニングプロセスは不要です。
さらに、実験結果から、分類器 \textcolor{\colorname}{ は、少数のインクラスサンプルでのみ正確であることを示し、異なる1クラス分類シナリオの様々なデータセット上で、最先端の多くのメソッドを上回ります。
領域シフト解析において,我々は境界に基づく定理を提案する。
この定理は、領域シフトの存在を検出し、データ情報を推測するのに有用である。
検出および推論プロセスは計算効率とメモリ効率の両方である。
私たちの研究は、オーバーラップベースのメトリクスの応用を広げるという大きな期待を示しています。
関連論文リスト
- A Generic Method for Fine-grained Category Discovery in Natural Language Texts [38.297873969795546]
そこで本研究では,新たな目的関数によって導かれる意味的類似テキストの微細なクラスタをうまく検出する手法を提案する。
この方法は対数空間における意味的類似性を利用してユークリッド空間のサンプル分布を導く。
また,リアルタイムアプリケーションをサポートするセントロイド推論機構を提案する。
論文 参考訳(メタデータ) (2024-06-18T23:27:46Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
本稿では,文脈認識型分類器の学習を通じて文脈ヒントを利用する。
本手法はモデルに依存しないため,ジェネリックセグメンテーションモデルにも容易に適用できる。
無視できる追加パラメータと+2%の推論時間だけで、小型モデルと大型モデルの両方で十分な性能向上が達成されている。
論文 参考訳(メタデータ) (2023-03-21T07:00:35Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
トランスダクティブ推論は、数ショットの学習で広く使われている。
推論における少数ショットタスクの問合せセット内における任意のクラス分布の効果について検討する。
我々は,3つの広く使用されているデータセットに対して,最先端のトランスダクティブ手法を実験的に評価した。
論文 参考訳(メタデータ) (2022-04-24T03:35:06Z) - Multiple Classifiers Based Maximum Classifier Discrepancy for
Unsupervised Domain Adaptation [25.114533037440896]
本稿では、2つの分類器の構造を複数の分類器に拡張し、その性能をさらに向上することを提案する。
平均的に、3つの分類器の構造を採用すると、精度と効率のトレードオフとして最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-02T03:00:13Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
既存のメソッドは、検証または未知のサンプルの事前定義された比率に基づいて未知のサンプルを拒否するしきい値を手動で設定します。
本稿では,ソースサンプルを用いて閾値を学習し,対象領域に適応する手法を提案する。
私たちの考えは、ソースドメインの最小クラス間距離は、ターゲットの既知のか未知かを決定するための良いしきい値であるべきです。
論文 参考訳(メタデータ) (2021-04-07T18:36:31Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
逆学習に基づくMMEN(MiniMax Entropy Networks)と呼ばれる実装が容易な手法を提案する。
ドメイン差に対処するためにジェネレータを使用する既存のアプローチとは異なり、MMENはラベルのないターゲットサンプルからカテゴリ情報を学習することに重点を置いている。
論文 参考訳(メタデータ) (2019-04-21T13:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。