論文の概要: Contingency-constrained economic dispatch with safe reinforcement learning
- arxiv url: http://arxiv.org/abs/2205.06212v3
- Date: Tue, 16 Jul 2024 10:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 00:37:39.491605
- Title: Contingency-constrained economic dispatch with safe reinforcement learning
- Title(参考訳): 安全強化学習による並行性制約付き経済派遣
- Authors: Michael Eichelbeck, Hannah Markgraf, Matthias Althoff,
- Abstract要約: 強化学習ベース(RL)コントローラはこの課題に対処できるが、それ自体が安全保証を提供することはできない。
本稿では,経済派遣のための公式なRLコントローラを提案する。
従来の制約を時間依存制約によって拡張する。
安全でないアクションは安全なアクション空間に投影され、制約付きゾノトペ集合表現を計算効率に活用する。
- 参考スコア(独自算出の注目度): 7.133681867718039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future power systems will rely heavily on micro grids with a high share of decentralised renewable energy sources and energy storage systems. The high complexity and uncertainty in this context might make conventional power dispatch strategies infeasible. Reinforcement-learning based (RL) controllers can address this challenge, however, cannot themselves provide safety guarantees, preventing their deployment in practice. To overcome this limitation, we propose a formally validated RL controller for economic dispatch. We extend conventional constraints by a time-dependent constraint encoding the islanding contingency. The contingency constraint is computed using set-based backwards reachability analysis and actions of the RL agent are verified through a safety layer. Unsafe actions are projected into the safe action space while leveraging constrained zonotope set representations for computational efficiency. The developed approach is demonstrated on a residential use case using real-world measurements.
- Abstract(参考訳): 将来の電力システムは、分散化された再生可能エネルギー源とエネルギー貯蔵システムを多く含むマイクログリッドに大きく依存する。
この文脈における高い複雑さと不確実性により、従来の配電戦略が実現不可能になる可能性がある。
強化学習ベース(RL)コントローラは、この課題に対処することができるが、それ自体が安全保証を提供しておらず、実際にデプロイすることを防ぐことはできない。
この制限を克服するために、経済派遣のための正式に検証されたRLコントローラを提案する。
従来の制約を時間依存制約によって拡張する。
セットベースの後方到達可能性分析を用いて一致制約を算出し、安全層を介してRLエージェントの動作を検証する。
安全でないアクションは安全なアクション空間に投影され、制約付きゾノトペ集合表現を計算効率に活用する。
本手法は実世界の実測値を用いた住宅利用事例で実証された。
関連論文リスト
- Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
非線形力学系の制御のための安全かつ収束性のある強化学習アルゴリズムを開発した。
制御とRLの交差点における最近の進歩は、ハードセーフティ制約を強制するための2段階の安全フィルタアプローチに従っている。
我々は,古典的な収束保証を享受するRLコントローラを学習する,一段階のサンプリングに基づくハード制約満足度へのアプローチを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:39:20Z) - Handling Long and Richly Constrained Tasks through Constrained
Hierarchical Reinforcement Learning [20.280636126917614]
目標の安全性 強化学習(RL)の設定は通常、軌道上の制約によって処理される。
本稿では,上位レベルの制約付き検索エージェントと下位レベルの目標条件付きRLエージェントを組み合わせた(安全)階層型強化学習(CoSHRL)機構を提案する。
CoSHRLの大きな利点は、コスト値分布の制約を処理でき、再トレーニングなしに柔軟な制約しきい値に調整できることである。
論文 参考訳(メタデータ) (2023-02-21T12:57:12Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
我々は,標準的な強化学習技術を用いて学習した名目政策に対して,国家安全の制約を認定するための制御理論的アプローチを開発する。
我々は、正式な安全保証を提供し、我々のアプローチの有効性を実証的に実証する。
論文 参考訳(メタデータ) (2022-07-04T11:43:23Z) - Reachability Constrained Reinforcement Learning [6.5158195776494]
本稿では、到達可能性解析を用いて最大の実現可能性集合を特徴付けるリーチビリティCRL(RCRL)法を提案する。
また、マルチ時間スケール近似理論を用いて、提案アルゴリズムが局所最適化に収束することを証明する。
安全な制御ジャムやセーフティガイムなどの異なるベンチマークにおける実験結果は、学習可能なセット、最適基準における性能、RCRLの制約満足度などを検証する。
論文 参考訳(メタデータ) (2022-05-16T09:32:45Z) - Safe Reinforcement Learning for Grid Voltage Control [0.0]
緊急時の電力系統の電圧安定性を回復するための標準手法として, 電圧負荷低減が検討されている。
本稿では,制約付き最適化手法とバリア関数に基づく2つの新しい安全なRL手法について論じる。
論文 参考訳(メタデータ) (2021-12-02T18:34:50Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
本稿では,ニューラルポリシー内での凸操作制約を強制するために,PROF(Projected Feasibility)を提案する。
エネルギー効率の高い建築操作とインバータ制御の2つの応用についてPROFを実証する。
論文 参考訳(メタデータ) (2021-05-19T01:58:10Z) - Lyapunov Barrier Policy Optimization [15.364174084072872]
本稿では,lyapunovベースのバリア関数を用いて,トレーニングイテレーション毎にポリシ更新をセーフセットに制限する手法であるlbpoを提案する。
また,本手法により,環境の制約に対して,エージェントの保守性を制御できる。
論文 参考訳(メタデータ) (2021-03-16T17:58:27Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。