Improving Sequential Query Recommendation with Immediate User Feedback
- URL: http://arxiv.org/abs/2205.06297v3
- Date: Wed, 3 Jul 2024 19:44:31 GMT
- Title: Improving Sequential Query Recommendation with Immediate User Feedback
- Authors: Shameem A Puthiya Parambath, Christos Anagnostopoulos, Roderick Murray-Smith,
- Abstract summary: We propose an algorithm for next query recommendation in interactive data exploration settings.
We conduct a large-scale experimental study using log files from a popular online literature discovery service.
- Score: 6.925738064847176
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose an algorithm for next query recommendation in interactive data exploration settings, like knowledge discovery for information gathering. The state-of-the-art query recommendation algorithms are based on sequence-to-sequence learning approaches that exploit historical interaction data. Due to the supervision involved in the learning process, such approaches fail to adapt to immediate user feedback. We propose to augment the transformer-based causal language models for query recommendations to adapt to the immediate user feedback using multi-armed bandit (MAB) framework. We conduct a large-scale experimental study using log files from a popular online literature discovery service and demonstrate that our algorithm improves the per-round regret substantially, with respect to the state-of-the-art transformer-based query recommendation models, which do not make use of immediate user feedback. Our data model and source code are available at https://github.com/shampp/exp3_ss
Related papers
- MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - A Sequence-Aware Recommendation Method Based on Complex Networks [1.385805101975528]
We build a network model from data and then use it to predict the user's subsequent actions.
The proposed method is implemented and tested experimentally on a large dataset.
arXiv Detail & Related papers (2022-09-30T16:34:39Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
This paper proposes a deep reinforcement learning based recommendation system by utilizing Actor-Critic architecture.
The proposed model is able to generate a diverse while relevance recommendation list based on the user's preferences.
arXiv Detail & Related papers (2021-10-28T13:11:29Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
Top-N recommendation, which aims to learn user ranking-based preference, has long been a fundamental problem in a wide range of applications.
In this paper, we propose to reformulate the recommendation task within the causal inference framework to handle the data scarce problem.
arXiv Detail & Related papers (2021-09-02T14:28:46Z) - ELIXIR: Learning from User Feedback on Explanations to Improve
Recommender Models [26.11434743591804]
We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences.
ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors.
Our framework is instantiated using generalized graph recommendation via Random Walk with Restart.
arXiv Detail & Related papers (2021-02-15T13:43:49Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.