論文の概要: Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
- arxiv url: http://arxiv.org/abs/2205.06359v1
- Date: Thu, 12 May 2022 20:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 13:35:43.229918
- Title: Deep Learning for Prawn Farming: Forecasting and Anomaly Detection
- Title(参考訳): 羽ばたき農業のための深層学習:予測と異常検出
- Authors: Joel Janek Dabrowski, Ashfaqur Rahman, Andrew Hellicar, Mashud Rana,
Stuart Arnold
- Abstract要約: エビ池における水質管理のための意思決定支援システムを提案する。
このシステムは, 様々なデータソースと深層学習モデルを用いて, 水質パラメータの24時間予測と異常検出を行う。
- 参考スコア(独自算出の注目度): 1.7324358447544173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a decision support system for managing water quality in prawn
ponds. The system uses various sources of data and deep learning models in a
novel way to provide 24-hour forecasting and anomaly detection of water quality
parameters. It provides prawn farmers with tools to proactively avoid a poor
growing environment, thereby optimising growth and reducing the risk of losing
stock. This is a major shift for farmers who are forced to manage ponds by
reactively correcting poor water quality conditions. To our knowledge, we are
the first to apply Transformer as an anomaly detection model, and the first to
apply anomaly detection in general to this aquaculture problem. Our technical
contributions include adapting ForecastNet for multivariate data and adapting
Transformer and the Attention model to incorporate weather forecast data into
their decoders. We attain an average mean absolute percentage error of 12% for
dissolved oxygen forecasts and we demonstrate two anomaly detection case
studies. The system is successfully running in its second year of deployment on
a commercial prawn farm.
- Abstract(参考訳): エビ池における水質管理のための意思決定支援システムを提案する。
このシステムは、24時間予測と水質パラメータの異常検出のための新しい方法で、さまざまなデータソースとディープラーニングモデルを使用する。
エビ農家に、成長の悪い環境を積極的に回避し、成長を最適化し、株を失うリスクを減らすためのツールを提供する。
これは、水質の悪い環境に反応して池の管理を強制される農家にとって大きな転換である。
私たちの知る限りでは、transformerを異常検出モデルとして初めて適用し、この養殖問題に一般的に異常検出を適用するのは初めてです。
我々の技術貢献には、多変量データにForecastNetを適用すること、天気予報データをデコーダに組み込むためにTransformerとAtentionモデルを適用することが含まれる。
溶存酸素の予測値の平均絶対値誤差は12%であり, 異常検出例は2例ある。
このシステムは、商業用エビ農場での2年目の展開で成功している。
関連論文リスト
- WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models [0.0]
本稿では,ネパールの季節的な水質を予測するためのハイブリッド深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を統合し、データの時間的および空間的パターンを活用する。
論文 参考訳(メタデータ) (2024-09-17T05:26:59Z) - Deep Reinforcement Multi-agent Learning framework for Information
Gathering with Local Gaussian Processes for Water Monitoring [3.2266662249755025]
局所ガウス過程と深層強化学習を用いて効果的なモニタリングポリシを共同で取得することが提案されている。
このモデルの平均と分散の観察に基づく決定に基づく、深い畳み込み政策が提案されている。
エージェントはDouble Deep Q-Learningアルゴリズムを用いて、安全な方法で推定誤差を最小限に抑えるように訓練される。
論文 参考訳(メタデータ) (2024-01-09T15:58:15Z) - Monitoring water contaminants in coastal areas through ML algorithms
leveraging atmospherically corrected Sentinel-2 data [3.155658695525581]
本研究では,CatBoost Machine Learning(ML)とSentinel-2 Level-2Aの高分解能データを統合することにより,濁度汚染をモニタリングする新たなアプローチを開拓した。
従来の方法は労働集約的であり、CatBoostは効率的なソリューションを提供し、予測精度に優れている。
大気補正されたSentinel-2データをGoogle Earth Engine(GEE)を通じて利用することで、スケーラブルで正確な濁度モニタリングに寄与する。
論文 参考訳(メタデータ) (2024-01-08T10:20:34Z) - Beyond Tides and Time: Machine Learning Triumph in Water Quality [0.0]
この研究は、データサイエンスの専門家とドメイン固有の知識を持たない人々の両方にとって、堅牢な予測パイプラインを確立することを目的としている。
我々の研究は、データサイエンスの専門家とドメイン固有の知識を持たない人々の両方にとって、堅牢な予測パイプラインを確立することを目的としています。
論文 参考訳(メタデータ) (2023-09-29T03:33:53Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
本研究では,水管故障の予測のための統計的および機械学習の枠組みについて検討する。
スペイン,バルセロナの配水ネットワーク内の全管の故障記録を含むデータセットを用いて検討を行った。
その結果, 管形状, 年齢, 材質, 土壌被覆など, 重要な危険因子の影響が明らかにされた。
論文 参考訳(メタデータ) (2020-07-02T19:08:36Z) - A multivariate water quality parameter prediction model using recurrent
neural network [0.30458514384586394]
本研究は水質パラメータに基づく水質予測モデルを構築することを目的とする。
このモデルは、リカレントニューラルネットワーク(RNN)、Long Short-Term Memory(LSTM)および履歴水質データを用いて開発された。
シングルステップモデルは0.01mg/Lの誤差を達成し、マルチステップモデルは0.227mg/LのRoot Mean Squared Error(RMSE)を達成した。
論文 参考訳(メタデータ) (2020-03-25T16:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。