論文の概要: WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models
- arxiv url: http://arxiv.org/abs/2409.10898v1
- Date: Tue, 17 Sep 2024 05:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 17:48:51.788198
- Title: WaterQualityNeT: Prediction of Seasonal Water Quality of Nepal Using Hybrid Deep Learning Models
- Title(参考訳): WaterQualityNeT:ハイブリッドディープラーニングモデルによるネパールの季節水質予測
- Authors: Biplov Paneru, Bishwash Paneru,
- Abstract要約: 本稿では,ネパールの季節的な水質を予測するためのハイブリッド深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を統合し、データの時間的および空間的パターンを活用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring a safe and uncontaminated water supply is contingent upon the monitoring of water quality, especially in developing countries such as Nepal, where water sources are susceptible to pollution. This paper presents a hybrid deep learning model for predicting Nepal's seasonal water quality using a small dataset with many water quality parameters. The model integrates convolutional neural networks (CNN) and recurrent neural networks (RNN) to exploit temporal and spatial patterns in the data. The results demonstrate significant improvements in forecast accuracy over traditional methods, providing a reliable tool for proactive control of water quality. The model that used WQI parameters to classify people into good, poor, and average groups performed 92% of the time in testing. Similarly, the R2 score was 0.97 and the root mean square error was 2.87 when predicting WQI values using regression analysis. Additionally, a multifunctional application that uses both a regression and a classification approach is built to predict WQI values.
- Abstract(参考訳): 安全で汚染されていない水の供給を確保することは、水質の監視に欠かせない。
本稿では,多くの水質パラメータを持つ小さなデータセットを用いてネパールの季節的な水質を予測するためのハイブリッド深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を統合し、データの時間的および空間的パターンを活用する。
その結果,従来の手法に比べて予測精度が大幅に向上し,水質を積極的に制御するための信頼性の高いツールが得られた。
WQIパラメータを使って人々を、良い、悪い、そして平均的なグループに分類したモデルは、テストで92%の時間を実行しました。
同様に、R2スコアは0.97で、根平均平方誤差は回帰分析を用いてWQI値を予測するときに2.87である。
さらに、回帰法と分類法の両方を用いる多機能アプリケーションは、WQI値を予測するために構築される。
関連論文リスト
- Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression [9.816891579613628]
中央バレー帯水層の3次元岩相テクスチャモデルから学習し,地下水位をモデル化するための新しい機械学習手法を考案した。
本研究では,不規則な井戸データを持つ流域における帯水層応答に対する水文学的理解を補うためにモデル予測がどのように用いられるかを示す。
以上の結果から,2017年と2019年のカリフォルニアの湿潤年は,前回の干ばつによる地下水損失の補充にはほとんど効果がなかったことが示唆された。
論文 参考訳(メタデータ) (2023-10-23T04:21:26Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Deep Learning for Prawn Farming: Forecasting and Anomaly Detection [1.7324358447544173]
エビ池における水質管理のための意思決定支援システムを提案する。
このシステムは, 様々なデータソースと深層学習モデルを用いて, 水質パラメータの24時間予測と異常検出を行う。
論文 参考訳(メタデータ) (2022-05-12T20:52:30Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
本稿では,多層パーセプトロンを用いて地下水位をシミュレーションする。
この問題には適応モーメント推定アルゴリズムも用いられる。
その結果,ディープラーニングアルゴリズムは高精度な予測が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T10:11:45Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
この研究は、NLPモデル更新における回帰エラーの定量化、低減、分析に重点を置いている。
回帰フリーモデル更新を制約付き最適化問題に定式化する。
モデルアンサンブルが回帰を減らす方法を実証的に分析します。
論文 参考訳(メタデータ) (2021-05-07T03:33:00Z) - A Hybrid Deep Learning Model for Predictive Flood Warning and Situation
Awareness using Channel Network Sensors Data [0.965964228590342]
この調査ではテキサス州ハリス郡をテストベッドとし、3つの歴史的な洪水からチャネルセンサーのデータを得た。
このモデルは、2019年のヒューストンのイメルダ洪水を予測するためにテストされ、その結果は経験的な洪水とよく一致している。
論文 参考訳(メタデータ) (2020-06-15T17:25:34Z) - A multivariate water quality parameter prediction model using recurrent
neural network [0.30458514384586394]
本研究は水質パラメータに基づく水質予測モデルを構築することを目的とする。
このモデルは、リカレントニューラルネットワーク(RNN)、Long Short-Term Memory(LSTM)および履歴水質データを用いて開発された。
シングルステップモデルは0.01mg/Lの誤差を達成し、マルチステップモデルは0.227mg/LのRoot Mean Squared Error(RMSE)を達成した。
論文 参考訳(メタデータ) (2020-03-25T16:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。