論文の概要: Simple and Effective Relation-based Embedding Propagation for Knowledge
Representation Learning
- arxiv url: http://arxiv.org/abs/2205.06456v1
- Date: Fri, 13 May 2022 06:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 13:03:48.847955
- Title: Simple and Effective Relation-based Embedding Propagation for Knowledge
Representation Learning
- Title(参考訳): 知識表現学習のためのシンプルで効果的な関係ベース埋め込み伝播
- Authors: Huijuan Wang, Siming Dai, Weiyue Su, Hui Zhong, Zeyang Fang, Zhengjie
Huang, Shikun Feng, Zeyu Chen, Yu Sun, Dianhai Yu
- Abstract要約: 本稿では,事前学習したグラフ埋め込みを文脈に適応させるために,Relation-based Embedding Propagation (REP)法を提案する。
我々は,REPがOGBL-WikiKG2上の三重項埋め込み法に対して10%の相対的な改善をもたらすことを示した。
最先端のGC-OTEと同等の結果を得るには5%-83%の時間を要する。
- 参考スコア(独自算出の注目度): 15.881121633396832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational graph neural networks have garnered particular attention to encode
graph context in knowledge graphs (KGs). Although they achieved competitive
performance on small KGs, how to efficiently and effectively utilize graph
context for large KGs remains an open problem. To this end, we propose the
Relation-based Embedding Propagation (REP) method. It is a post-processing
technique to adapt pre-trained KG embeddings with graph context. As relations
in KGs are directional, we model the incoming head context and the outgoing
tail context separately. Accordingly, we design relational context functions
with no external parameters. Besides, we use averaging to aggregate context
information, making REP more computation-efficient. We theoretically prove that
such designs can avoid information distortion during propagation. Extensive
experiments also demonstrate that REP has significant scalability while
improving or maintaining prediction quality. Notably, it averagely brings about
10% relative improvement to triplet-based embedding methods on OGBL-WikiKG2 and
takes 5%-83% time to achieve comparable results as the state-of-the-art GC-OTE.
- Abstract(参考訳): リレーショナルグラフニューラルネットワークは、知識グラフ(KG)のグラフコンテキストを符号化するために特に注目を集めている。
小型kgでの競争力は高いが、グラフコンテキストを大規模kgで効率的に活用する方法は未解決の問題である。
そこで本研究では,Relation-based Embedding Propagation (REP)法を提案する。
事前学習されたkg埋め込みをグラフコンテキストに適応させるための後処理技術である。
KG間の関係は指向的であるので、入ってくる頭部コンテキストと出ている尾コンテキストを別々にモデル化する。
したがって,外部パラメータを含まない関係コンテキスト関数を設計する。
さらに、平均化を用いてコンテキスト情報を集約し、REPをより計算効率よくします。
このような設計は伝播中の情報歪みを回避できることを理論的に証明する。
大規模な実験では、REPは予測品質を改善したり維持したりしながら大きなスケーラビリティを持っていることも示している。
特に、OGBL-WikiKG2上の三重項ベースの埋め込みメソッドに対して平均10%の相対的な改善をもたらし、最先端のGC-OTEと同等の結果を得るのに5%-83%の時間を要する。
関連論文リスト
- Graph Context Transformation Learning for Progressive Correspondence
Pruning [26.400567961735234]
本稿では,プログレッシブ対応プルーニングのためのコンセンサスガイダンスを行うために,文脈情報を強化するグラフコンテキスト変換ネットワーク(GCT-Net)を提案する。
具体的には、まずグラフネットワークを生成し、次にマルチブランチグラフコンテキストに変換するグラフコンテキストエンハンス変換器を設計する。
そこで本稿では,グラフ・コンテキスト・ガイダンス・トランスフォーマ(Graph Context Guidance Transformer)を提案する。
論文 参考訳(メタデータ) (2023-12-26T09:43:30Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
FKGC (Few-shot Knowledge Graph completion) は、失明した事実を、無意味な関連のある事実で予測することを目的としている。
既存のFKGC手法はメートル法学習やメタラーニングに基づいており、しばしば分布外や過度に適合する問題に悩まされる。
本稿では,数ショット知識グラフ補完(NP-FKGC)のためのフローベースニューラルプロセスの正規化を提案する。
論文 参考訳(メタデータ) (2023-04-17T11:42:28Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
グラフ畳み込みネットワーク(R-GCN)の集約関数にテンソル分解を組み込んだ新しい知識グラフを提案する。
我々のモデルは、関係型によって定義される低ランクテンソルの射影行列を用いて、隣り合う実体の表現を強化する。
我々は,グラフ処理に固有の1-k-kエンコーダ法のトレーニング制限を緩和するために,コントラスト学習にインスパイアされたトレーニング戦略を採用する。
論文 参考訳(メタデータ) (2022-12-11T19:07:34Z) - KRACL: Contrastive Learning with Graph Context Modeling for Sparse
Knowledge Graph Completion [37.92814873958519]
知識グラフ埋め込み (KGE) は、エンティティと関係を低次元空間にマッピングすることを目的としており、知識グラフ補完のためのテキストファクト標準となっている。
既存のKGE手法の多くは、知識グラフの頻度が低いエンティティを予測しにくいため、スパーシティの課題に悩まされている。
グラフコンテキストとコントラスト学習を用いて,KGの広がりを緩和する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-08-16T09:17:40Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
本稿では,単語埋め込みのランダムウォークモデル(Arora et al., 2016a)を知識グラフ埋め込み(KGE)に拡張する。
二つの実体 h (head) と t (tail) の間の関係 R の強さを評価するスコア関数を導出する。
理論的解析によって動機付けられた学習目標を提案し,知識グラフからKGEを学習する。
論文 参考訳(メタデータ) (2021-01-25T13:31:29Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。