論文の概要: Modeling Human Behavior Part II -- Cognitive approaches and Uncertainty
- arxiv url: http://arxiv.org/abs/2205.06483v1
- Date: Fri, 13 May 2022 07:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 13:02:16.495910
- Title: Modeling Human Behavior Part II -- Cognitive approaches and Uncertainty
- Title(参考訳): 人間の行動のモデル化 その2 --認知的アプローチと不確かさ
- Authors: Andrew Fuchs and Andrea Passarella and Marco Conti
- Abstract要約: 第1部では,システムの探索から行動モデルを生成する手法と,提示された行動に基づくフィードバックについて論じる。
本研究は、人間の推論で示される認知能力、限界、偏見に焦点をあてる手法の観点から、引き続き議論を続ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As we discussed in Part I of this topic, there is a clear desire to model and
comprehend human behavior. Given the popular presupposition of human reasoning
as the standard for learning and decision-making, there have been significant
efforts and a growing trend in research to replicate these innate human
abilities in artificial systems. In Part I, we discussed learning methods which
generate a model of behavior from exploration of the system and feedback based
on the exhibited behavior as well as topics relating to the use of or
accounting for beliefs with respect to applicable skills or mental states of
others. In this work, we will continue the discussion from the perspective of
methods which focus on the assumed cognitive abilities, limitations, and biases
demonstrated in human reasoning. We will arrange these topics as follows (i)
methods such as cognitive architectures, cognitive heuristics, and related
which demonstrate assumptions of limitations on cognitive resources and how
that impacts decisions and (ii) methods which generate and utilize
representations of bias or uncertainty to model human decision-making or the
future outcomes of decisions.
- Abstract(参考訳): このトピックの第1部で論じたように、人間の行動をモデル化し理解したいという明確な願望があります。
学習と意思決定の標準としての人間の推論の一般的な前提を考えると、これらの生来の人間の能力を人工的なシステムで再現する研究の多大な努力と成長傾向がある。
第1部では,システムの探索から行動モデルを生成する学習手法と,その提示された行動に基づくフィードバックと,適用可能なスキルや他者の精神状態に対する信念の使用や説明に関する話題について議論した。
本研究は,人間の推論で示される認知能力,限界,バイアスに着目した手法の観点から議論を継続する。
これらのトピックを次のように整理します。
(i)認知的アーキテクチャ、認知的ヒューリスティックス、および認知的資源に対する制限の仮定とそれが意思決定にどのように影響するかを示す関連方法
二 偏見又は不確実性の表現を生成して活用し、人間の意思決定又は将来の意思決定の結果をモデル化する方法。
関連論文リスト
- Mimicking Human Intuition: Cognitive Belief-Driven Q-Learning [5.960184723807347]
本稿では,主観的信念モデリングをQラーニングフレームワークに統合した認知的信念駆動型Qラーニング(CBDQ)を提案する。
CBDQは、人間のような学習能力と推論能力を持つエージェントを提供することで、意思決定の精度を高める。
各種複雑環境における離散制御ベンチマークタスクについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-10-02T16:50:29Z) - ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models [53.00812898384698]
生成型大規模言語モデル(LLM)の人間による評価は多分野にわたる作業であるべきだと論じる。
認知バイアスが、流動的な情報や真理をいかに説明するか、そして、認識の不確実性が、Likertのような評価スコアの信頼性にどのように影響するかを強調します。
本稿では,ConSiDERS-The-Human評価フレームワークを提案する。一貫性,スコーリング基準,差別化,ユーザエクスペリエンス,責任,スケーラビリティの6つの柱からなる。
論文 参考訳(メタデータ) (2024-05-28T22:45:28Z) - Benchmarking Continual Learning from Cognitive Perspectives [14.867136605254975]
継続的な学習は、古い概念を破滅的に忘れることなく、継続的に知識を取得し、伝達する問題に対処する。
連続学習モデルの認知特性と評価方法にはミスマッチがある。
本稿では,モデル認知能力と評価指標を統一評価パラダイムに統合することを提案する。
論文 参考訳(メタデータ) (2023-12-06T06:27:27Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Modeling Human Behavior Part I -- Learning and Belief Approaches [0.0]
探索とフィードバックを通じて行動のモデルや方針を学ぶ手法に焦点を当てる。
次世代の自律的適応システムは、主にAIエージェントと人間がチームとして一緒に働く。
論文 参考訳(メタデータ) (2022-05-13T07:33:49Z) - Machine Explanations and Human Understanding [31.047297225560566]
説明は、機械学習モデルの人間の理解を改善すると仮定される。
実験的な研究で 混ざった結果も 否定的な結果も出ています
人間の直観が人間の理解にどのような役割を果たしているかを示す。
論文 参考訳(メタデータ) (2022-02-08T19:00:38Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Cognitive science as a source of forward and inverse models of human
decisions for robotics and control [13.502912109138249]
我々は、認知科学が人間の意思決定の前進モデルをどのように提供できるかを考察する。
我々はブラックボックスと理論駆動モデリングを合成するアプローチを強調した。
我々は,認知科学と制御研究の共通点にあるフレームワーク,方法論,行動可能な洞察の範囲を,読者に垣間見ることを目的としている。
論文 参考訳(メタデータ) (2021-09-01T00:28:28Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。