論文の概要: LSCDiscovery: A shared task on semantic change discovery and detection
in Spanish
- arxiv url: http://arxiv.org/abs/2205.06691v1
- Date: Fri, 13 May 2022 14:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 13:03:14.884490
- Title: LSCDiscovery: A shared task on semantic change discovery and detection
in Spanish
- Title(参考訳): LSCDiscovery:スペイン語における意味変化の発見と検出に関する共有タスク
- Authors: Frank D. Zamora-Reina, Felipe Bravo-Marquez, Dominik Schlechtweg
- Abstract要約: スペイン語で意味変化の発見と検出に関する最初の共有タスクを提示する。
我々は、DURelフレームワークを使用して、意味変化のために手動でアノテートされたスペイン語単語の最初のデータセットを作成する。
競合するチームが開発したシステムについて述べ、特に有用であったテクニックを強調し、これらのアプローチの限界について議論する。
- 参考スコア(独自算出の注目度): 12.85253662018234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first shared task on semantic change discovery and detection
in Spanish and create the first dataset of Spanish words manually annotated for
semantic change using the DURel framework (Schlechtweg et al., 2018). The task
is divided in two phases: 1) Graded Change Discovery, and 2) Binary Change
Detection. In addition to introducing a new language the main novelty with
respect to the previous tasks consists in predicting and evaluating changes for
all vocabulary words in the corpus. Six teams participated in phase 1 and seven
teams in phase 2 of the shared task, and the best system obtained a Spearman
rank correlation of 0.735 for phase 1 and an F1 score of 0.716 for phase 2. We
describe the systems developed by the competing teams, highlighting the
techniques that were particularly useful and discuss the limits of these
approaches.
- Abstract(参考訳): スペイン語における意味的変化の発見と検出に関する最初の共通タスクを提示し,durelフレームワーク(schlechtweg et al., 2018)を用いて,意味的変化を手作業でアノテートしたスペイン語単語のデータセットを作成する。
その仕事は2つの段階に分けられる。
1)段階的変化発見、及び
2)バイナリ変更検出。
新しい言語の導入に加えて、以前のタスクに対する主な新規性は、コーパス内のすべての語彙語の変化を予測し、評価することである。
6チームが第1相と第7相のフェーズ2に参加し、最も優れたシステムは第1相のスピアマンランク相関0.735、第2相のF1スコア0.716を得た。
競合するチームが開発したシステムについて述べ、特に有用であったテクニックを強調し、これらのアプローチの限界について議論する。
関連論文リスト
- Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - Handshakes AI Research at CASE 2021 Task 1: Exploring different
approaches for multilingual tasks [0.22940141855172036]
ケース2021共有タスク1の目的は,多言語環境下での社会・政治・危機事象情報の検出と分類である。
提案書にはすべてのサブタスクのエントリが含まれており,得られたスコアが調査結果の妥当性を検証した。
論文 参考訳(メタデータ) (2021-10-29T07:58:49Z) - MCL@IITK at SemEval-2021 Task 2: Multilingual and Cross-lingual
Word-in-Context Disambiguation using Augmented Data, Signals, and
Transformers [1.869621561196521]
我々はSemEval 2021 Task 2: Multilingual and cross-lingual Word-in-Context Disambiguation (MCL-WiC) の解法を提案する。
目的は、両方の文に共通する単語が同じ意味を引き起こすかどうかを検出することである。
多言語とクロスリンガルの両方の設定のためのシステムを提出します。
論文 参考訳(メタデータ) (2021-04-04T08:49:28Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - Cross-Lingual Transfer Learning for Complex Word Identification [0.3437656066916039]
複合単語識別(CWI)は、テキスト中の難解な単語を検出することに焦点を当てたタスクである。
我々のアプローチでは、自然言語処理(NLP)タスクのための最先端のソリューションとともに、ゼロショット、ワンショット、および少数ショットの学習技術を使用します。
本研究の目的は,多言語環境下で複雑な単語の特徴を学習できることを示すことである。
論文 参考訳(メタデータ) (2020-10-02T17:09:47Z) - NLP-CIC at SemEval-2020 Task 9: Analysing sentiment in code-switching
language using a simple deep-learning classifier [63.137661897716555]
コードスイッチングは、2つ以上の言語が同じメッセージで使用される現象である。
標準的な畳み込みニューラルネットワークモデルを用いて、スペイン語と英語の混在するツイートの感情を予測する。
論文 参考訳(メタデータ) (2020-09-07T19:57:09Z) - UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social
Media Texts using Transformers and Multi-Task Learning [1.7196613099537055]
本研究チームは,SemEval-2020 Task 9のために開発したシステムについて述べる。
私たちは、ヒンディー語とスペイン語の2つのよく知られた混成言語をカバーすることを目指しています。
提案手法は, 平均F1スコアが0.6850であるヒンディー語タスクにおいて, 有望な性能を達成する。
スペイン語と英語のタスクでは、29人中17人として、平均で0.7064のF1スコアを獲得しました。
論文 参考訳(メタデータ) (2020-09-06T17:19:18Z) - SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection [10.606357227329822]
評価は、現在、レキシカルセマンティック・チェンジ検出において最も差し迫った問題である。
コミュニティにとって金の基準は存在せず、進歩を妨げている。
このギャップに対処する最初の共有タスクの結果を示す。
論文 参考訳(メタデータ) (2020-07-22T14:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。