論文の概要: Handshakes AI Research at CASE 2021 Task 1: Exploring different
approaches for multilingual tasks
- arxiv url: http://arxiv.org/abs/2110.15599v1
- Date: Fri, 29 Oct 2021 07:58:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-01 13:41:07.221403
- Title: Handshakes AI Research at CASE 2021 Task 1: Exploring different
approaches for multilingual tasks
- Title(参考訳): Handshakes AI Research at Case 2021 Task 1: Exploring different approach for multilingual task
- Authors: Vivek Kalyan and Paul Tan and Shaun Tan and Martin Andrews
- Abstract要約: ケース2021共有タスク1の目的は,多言語環境下での社会・政治・危機事象情報の検出と分類である。
提案書にはすべてのサブタスクのエントリが含まれており,得られたスコアが調査結果の妥当性を検証した。
- 参考スコア(独自算出の注目度): 0.22940141855172036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of the CASE 2021 Shared Task 1 (H\"urriyeto\u{g}lu et al., 2021) was
to detect and classify socio-political and crisis event information at
document, sentence, cross-sentence, and token levels in a multilingual setting,
with each of these subtasks being evaluated separately in each test language.
Our submission contained entries in all of the subtasks, and the scores
obtained validated our research finding: That the multilingual aspect of the
tasks should be embraced, so that modeling and training regimes use the
multilingual nature of the tasks to their mutual benefit, rather than trying to
tackle the different languages separately. Our code is available at
https://github.com/HandshakesByDC/case2021/
- Abstract(参考訳): 2021年のケース共有タスク1(h\"urriyeto\u{g}lu et al., 2021)の目的は、文書、文、クロスセンス、トークンレベルでの社会-政治的および危機的事象情報を多言語環境で検出・分類することであり、各サブタスクは各テスト言語で別々に評価される。
タスクの多言語的側面を取り入れるべきであり、モデリングとトレーニングのレジームは、異なる言語を別々に扱うのではなく、タスクの多言語的性質を相互に利益のために利用するべきである。
私たちのコードはhttps://github.com/HandshakesByDC/case2021/で利用可能です。
関連論文リスト
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection [68.858931667807]
Subtask Aは、テキストが人間によって書かれたか、機械によって生成されたかを決定するバイナリ分類タスクである。
サブタスクBは、テキストの正確なソースを検出し、それが人間によって書かれたか、特定のLCMによって生成されたかを認識する。
Subtask Cは、著者が人間から機械へ遷移するテキスト内の変化点を特定することを目的としている。
論文 参考訳(メタデータ) (2024-04-22T13:56:07Z) - AAdaM at SemEval-2024 Task 1: Augmentation and Adaptation for Multilingual Semantic Textual Relatedness [16.896143197472114]
本稿では,アフリカとアジアの言語に対するセマンティックテキスト関連性(SemEval-2024 Task 1: Semantic Textual Relatedness)について述べる。
本稿では,限られたトレーニングデータの低リソース化問題に対処するために,機械翻訳によるデータ拡張を提案する。
我々のシステムは、サブタスクA(教師付き学習)とサブタスクC(言語間の移動)の両方において、すべてのチームの中で最善を尽くします。
論文 参考訳(メタデータ) (2024-04-01T21:21:15Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - Pretraining Approaches for Spoken Language Recognition: TalTech
Submission to the OLR 2021 Challenge [0.0]
この論文は、東洋言語認識2021チャレンジへの提案に基づいています。
制約トラックに対しては,まず,多言語自動音声認識のためのコンバータベースのエンコーダデコーダモデルを訓練した。
制約のないタスクでは、外部で利用可能な事前訓練されたモデルと外部データの両方を頼りにしました。
論文 参考訳(メタデータ) (2022-05-14T15:17:08Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - Multilingual Event Linking to Wikidata [5.726712522440283]
イベントリンクタスクの2つの変種を提案する: 1) イベント記述が言及と同じ言語からのものであるマルチリンガル、2) イベント記述がすべて英語で書かれているクロスリンガル。
このタスクのために大規模なデータセットを自動的にコンパイルし、Wikidataから10.9K以上のイベントを参照する44言語にわたる1.8Mの言及を含む。
論文 参考訳(メタデータ) (2022-04-13T17:28:23Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - ANDES at SemEval-2020 Task 12: A jointly-trained BERT multilingual model
for offensive language detection [0.6445605125467572]
我々は,提案言語にまたがる課題に対処するために,多言語BERTを微調整した単一モデルを共同で訓練した。
私たちの単一モデルは、最高のパフォーマンスシステムに近いパフォーマンスで、競争力のある結果を得ました。
論文 参考訳(メタデータ) (2020-08-13T16:07:00Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training,
Understanding and Generation [100.09099800591822]
XGLUEは、大規模な言語間の事前トレーニングモデルのトレーニングに使用できる、新しいベンチマークデータセットである。
XGLUEは、自然言語理解と生成シナリオの両方をカバーする、11の多様化されたタスクを提供する。
論文 参考訳(メタデータ) (2020-04-03T07:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。