論文の概要: Exploring How Machine Learning Practitioners (Try To) Use Fairness
Toolkits
- arxiv url: http://arxiv.org/abs/2205.06922v2
- Date: Tue, 10 Jan 2023 07:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 16:51:54.086349
- Title: Exploring How Machine Learning Practitioners (Try To) Use Fairness
Toolkits
- Title(参考訳): 機械学習の実践者(Try To)がフェアネスツールキットを使う方法を探る
- Authors: Wesley Hanwen Deng, Manish Nagireddy, Michelle Seng Ah Lee, Jatinder
Singh, Zhiwei Steven Wu, Kenneth Holstein, Haiyi Zhu
- Abstract要約: 業界実践者が既存の公正ツールキットでどのように機能するかについて検討する。
フェアネスツールキットが実践者のニーズに対処するいくつかの機会を特定します。
我々は、将来のオープンソースフェアネスツールキットの設計における意味を強調した。
- 参考スコア(独自算出の注目度): 35.7895677378462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen the development of many open-source ML fairness
toolkits aimed at helping ML practitioners assess and address unfairness in
their systems. However, there has been little research investigating how ML
practitioners actually use these toolkits in practice. In this paper, we
conducted the first in-depth empirical exploration of how industry
practitioners (try to) work with existing fairness toolkits. In particular, we
conducted think-aloud interviews to understand how participants learn about and
use fairness toolkits, and explored the generality of our findings through an
anonymous online survey. We identified several opportunities for fairness
toolkits to better address practitioner needs and scaffold them in using
toolkits effectively and responsibly. Based on these findings, we highlight
implications for the design of future open-source fairness toolkits that can
support practitioners in better contextualizing, communicating, and
collaborating around ML fairness efforts.
- Abstract(参考訳): 近年,ML実践者がシステムの不公平さを評価し,対処することを目的とした,オープンソースのMLフェアネスツールキットが数多く開発されている。
しかし、ML実践者が実際にこれらのツールキットをどのように使っているかは、ほとんど研究されていない。
本稿では,産業実践者が既存のフェアネスツールキットでどのように機能するかについて,詳細な実証調査を行った。
特に,参加者がフェアネスツールキットをどのように学習し,活用するかを理解するために,シンク・アラウド・インタビューを実施し,匿名のオンライン調査を通じて調査を行った。
フェアネスツールキットが実践者のニーズに対処し、ツールキットを効果的かつ責任を持って利用する上で足場を構築するためのいくつかの機会を特定した。
これらの知見に基づいて,mlフェアネスの取り組みに関する実践者のコンテクスト化,コミュニケーション,コラボレーションを支援する,将来のオープンソースフェアネスツールキットの設計への示唆を強調する。
関連論文リスト
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
本稿では,大規模言語モデルと外部ツールとの包括的ギャップを埋めることに焦点を当てる。
ツール文書の動的精錬を目的とした新しいフレームワーク DRAFT を提案する。
複数のデータセットに対する大規模な実験は、DRAFTの反復的なフィードバックベースの改善がドキュメントの品質を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-10-10T17:58:44Z) - What You Need is What You Get: Theory of Mind for an LLM-Based Code Understanding Assistant [0.0]
開発者のコード理解を支援するために、多くのツールがLLM(Large Language Models)を使用している。
本研究では,LLMをベースとした対話型アシスタントの設計を行った。
コード理解の初心者を支援するためにLLMベースの会話アシスタントを開発したり改善したりしたい研究者やツールビルダーに洞察を提供する。
論文 参考訳(メタデータ) (2024-08-08T14:08:15Z) - What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks [33.51887014808227]
本稿では,ツール学習フレームワークの性能に及ぼす内部要因と外部要因の影響について検討する。
今後の研究には、LCMが試行錯誤の増加から大きな恩恵を受けることができるという観察など、洞察に富んだ結論がいくつか見出される。
論文 参考訳(メタデータ) (2024-07-03T11:06:05Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
for Developing Practical Guidelines and Tools [18.513353100744823]
最近の研究はMLコミュニティに対して、公平な問題に取り組むためにより包括的なアプローチを取るように呼びかけている。
まず、明確なガイドラインやツールキットがなければ、特殊なML知識を持つ個人でさえ、さまざまな設計選択がモデル行動にどのように影響するかを仮説化することは困難である。
次に、パイプライン対応アプローチの運用に向けた現在の進捗を理解するために、フェアMLの文献を参考にします。
論文 参考訳(メタデータ) (2023-09-29T15:48:26Z) - FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
Social-Critical Algorithms [13.649336187121095]
この論文は、機械学習(ML)モデル説明ツールが、機械学習ベースの意思決定支援システムにおける不公平さを、レイマンが可視化し、理解し、直感的に改善できるかどうかを探求する。
この論文では、概念実証のGUIであるFairLay-MLを紹介し、最も有望なツールを統合し、MLモデルにおける不公平なロジックの直感的な説明を提供する。
論文 参考訳(メタデータ) (2023-07-11T06:05:06Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
本稿では,IT企業の従業員が生成ツールを使用する意図を明らかにするためのアンケート調査を行う。
以上の結果から, 生成ツールの比較的平均的な受容性が示唆されるが, ツールが有用であると認識されるほど, 意図が高くなることが示唆された。
分析の結果, 生産ツールの利用頻度は, 従業員が作業の文脈でこれらのツールをどのように認識しているかを理解する上で重要な要因である可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-18T15:35:43Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
公正性の研究の大部分は、機械学習の実践者がアルゴリズムを設計しながらバイアスを監査するために使用できるツールの開発に費やされている。
実際には、これらの公平性ソリューションの応用例が欠如している。
このレビューでは、定義されたアルゴリズムバイアス問題と提案された公正解空間の詳細な概要について述べる。
論文 参考訳(メタデータ) (2021-12-10T17:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。