論文の概要: From Expectation to Habit: Why Do Software Practitioners Adopt Fairness Toolkits?
- arxiv url: http://arxiv.org/abs/2412.13846v2
- Date: Thu, 19 Dec 2024 10:22:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:37.886518
- Title: From Expectation to Habit: Why Do Software Practitioners Adopt Fairness Toolkits?
- Title(参考訳): 期待から習慣へ:なぜソフトウェア実践者は公正なツールキットを採用するのか?
- Authors: Gianmario Voria, Stefano Lambiase, Maria Concetta Schiavone, Gemma Catolino, Fabio Palomba,
- Abstract要約: 本研究では,公正度ツールキットの導入に影響を与える要因を個人的視点から検討した。
以上の結果から,期待度と習慣がフェアネスツールキット採用の主要な要因であることが判明した。
実践的な推奨事項としては、ツールキットのユーザビリティの向上、バイアス軽減プロセスの定期的な開発への統合、継続的なサポートの提供などがある。
- 参考スコア(独自算出の注目度): 11.05629708648904
- License:
- Abstract: As the adoption of machine learning (ML) systems continues to grow across industries, concerns about fairness and bias in these systems have taken center stage. Fairness toolkits, designed to mitigate bias in ML models, serve as critical tools for addressing these ethical concerns. However, their adoption in the context of software development remains underexplored, especially regarding the cognitive and behavioral factors driving their usage. As a deeper understanding of these factors could be pivotal in refining tool designs and promoting broader adoption, this study investigates the factors influencing the adoption of fairness toolkits from an individual perspective. Guided by the Unified Theory of Acceptance and Use of Technology (UTAUT2), we examined the factors shaping the intention to adopt and actual use of fairness toolkits. Specifically, we employed Partial Least Squares Structural Equation Modeling (PLS-SEM) to analyze data from a survey study involving practitioners in the software industry. Our findings reveal that performance expectancy and habit are the primary drivers of fairness toolkit adoption. These insights suggest that by emphasizing the effectiveness of these tools in mitigating bias and fostering habitual use, organizations can encourage wider adoption. Practical recommendations include improving toolkit usability, integrating bias mitigation processes into routine development workflows, and providing ongoing support to ensure professionals see clear benefits from regular use.
- Abstract(参考訳): 機械学習(ML)システムの採用が業界全体に拡大するにつれ、これらのシステムの公平性や偏見に対する懸念が中心となっている。
MLモデルのバイアスを軽減するために設計された公正ツールキットは、これらの倫理的懸念に対処するための重要なツールとして機能する。
しかしながら、ソフトウェア開発の文脈における彼らの採用は、特にその使用を駆動する認知的および行動的要因について、まだ未熟である。
これらの要因のより深い理解は、ツールデザインの精細化と、より広範な採用を促進する上で重要なものであり得るので、個々の視点から、公正性ツールキットの採用に影響を与える要因について検討する。
UTAUT2(Unified Theory of Acceptance and Use of Technology)によって導かれ、フェアネスツールキットの採用と実際の利用を意図した要因について検討した。
具体的には,PLS-SEM(Partial Least Squares Structure Equation Modeling)を用いて,ソフトウェア産業の実践者を対象とした調査から得られたデータを分析した。
以上の結果から,期待度と習慣がフェアネスツールキット採用の主要な要因であることが判明した。
これらの洞察は、偏見を緩和し、習慣的使用を促進する上で、これらのツールの有効性を強調することで、組織はより広範な採用を促進することができることを示唆している。
実践的な推奨事項には、ツールキットのユーザビリティの向上、バイアス軽減プロセスの定期的な開発ワークフローへの統合、プロフェッショナルが通常の使用から明らかなメリットを享受するための継続的なサポートなどが含まれる。
関連論文リスト
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
本稿では,大規模言語モデルと外部ツールとの包括的ギャップを埋めることに焦点を当てる。
ツール文書の動的精錬を目的とした新しいフレームワーク DRAFT を提案する。
複数のデータセットに対する大規模な実験は、DRAFTの反復的なフィードバックベースの改善がドキュメントの品質を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-10-10T17:58:44Z) - Initial Insights on MLOps: Perception and Adoption by Practitioners [9.777475640906404]
MLOps(Machine Learning and Operations)ガイドラインがこの分野の主要なリファレンスとして登場した。
MLOpsガイドラインの導入にも拘わらず、その実装には懐疑論の程度がある。
この研究は、MLOpsとその機械学習におけるイノベーションの次のフェーズへの影響について、より深い洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2024-08-01T11:08:29Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
for Developing Practical Guidelines and Tools [18.513353100744823]
最近の研究はMLコミュニティに対して、公平な問題に取り組むためにより包括的なアプローチを取るように呼びかけている。
まず、明確なガイドラインやツールキットがなければ、特殊なML知識を持つ個人でさえ、さまざまな設計選択がモデル行動にどのように影響するかを仮説化することは困難である。
次に、パイプライン対応アプローチの運用に向けた現在の進捗を理解するために、フェアMLの文献を参考にします。
論文 参考訳(メタデータ) (2023-09-29T15:48:26Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
本稿では,IT企業の従業員が生成ツールを使用する意図を明らかにするためのアンケート調査を行う。
以上の結果から, 生成ツールの比較的平均的な受容性が示唆されるが, ツールが有用であると認識されるほど, 意図が高くなることが示唆された。
分析の結果, 生産ツールの利用頻度は, 従業員が作業の文脈でこれらのツールをどのように認識しているかを理解する上で重要な要因である可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-18T15:35:43Z) - Exploring How Machine Learning Practitioners (Try To) Use Fairness
Toolkits [35.7895677378462]
業界実践者が既存の公正ツールキットでどのように機能するかについて検討する。
フェアネスツールキットが実践者のニーズに対処するいくつかの機会を特定します。
我々は、将来のオープンソースフェアネスツールキットの設計における意味を強調した。
論文 参考訳(メタデータ) (2022-05-13T23:07:46Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
公正性の研究の大部分は、機械学習の実践者がアルゴリズムを設計しながらバイアスを監査するために使用できるツールの開発に費やされている。
実際には、これらの公平性ソリューションの応用例が欠如している。
このレビューでは、定義されたアルゴリズムバイアス問題と提案された公正解空間の詳細な概要について述べる。
論文 参考訳(メタデータ) (2021-12-10T17:51:20Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。