Atom Interferometry with Floquet Atom Optics
- URL: http://arxiv.org/abs/2205.06965v3
- Date: Tue, 17 Jan 2023 23:12:16 GMT
- Title: Atom Interferometry with Floquet Atom Optics
- Authors: Thomas Wilkason, Megan Nantel, Jan Rudolph, Yijun Jiang, Benjamin E.
Garber, Hunter Swan, Samuel P. Carman, Mahiro Abe, Jason M. Hogan
- Abstract summary: Floquet engineering offers a compelling approach for designing periodically driven systems.
We implement a periodic atom-light coupling to realize Floquet atom optics on the strontium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Floquet engineering offers a compelling approach for designing the time
evolution of periodically driven systems. We implement a periodic atom-light
coupling to realize Floquet atom optics on the strontium ${}^1\!S_0\,\text{-}\,
{}^3\!P_1$ transition. These atom optics reach pulse efficiencies above
$99.4\%$ over a wide range of frequency offsets between light and atomic
resonance, even under strong driving where this detuning is on the order of the
Rabi frequency. Moreover, we use Floquet atom optics to compensate for
differential Doppler shifts in large momentum transfer atom interferometers and
achieve state-of-the-art momentum separation in excess of $400~\hbar k$. This
technique can be applied to any two-level system at arbitrary coupling
strength, with broad application in coherent quantum control.
Related papers
- Optimal Floquet Engineering for Large Scale Atom Interferometers [0.0]
We present a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.
We demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils between its two arms.
Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales.
arXiv Detail & Related papers (2024-03-21T12:05:58Z) - An atom interferometer driven by a picosecond frequency comb [0.0]
We demonstrate a light-pulse atom interferometer based on the diffraction of free-falling atoms by a picosecond frequency-comb laser.
We coherently split and recombine wave packets of cold $87$Rb atoms by driving stimulated Raman transitions.
Results pave the way for extending light-pulse interferometry to transitions in other spectral regions and therefore to other species.
arXiv Detail & Related papers (2022-07-26T08:25:42Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Ultrastrong waveguide QED with giant atoms [0.0]
We extend the theory of giant atoms to deal with the ultrastrong coupling regime.
We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law.
arXiv Detail & Related papers (2022-05-16T18:01:13Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Minimizing the discrimination time for quantum states of an artificial
atom [0.0]
Fast discrimination between quantum states of superconducting artificial atoms is an important ingredient for quantum information processing.
In circuit quantum electrodynamics, increasing the signal field amplitude in the readout resonator, dispersively coupled to the artificial atom, improves the signal-to-noise ratio and increases the measurement strength.
arXiv Detail & Related papers (2020-11-17T15:12:32Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - A tweezer clock with half-minute atomic coherence at optical frequencies
and high relative stability [0.6113111451963646]
We introduce a new, hybrid approach to tailoring optical potentials by tweezer-trapped alkaline-earth atoms.
We achieve trapping and optical clock excited-state lifetimes exceeding $ 40 $ seconds in ensembles of approximately $ 150 $ atoms.
Results pave the way towards long-lived engineered entanglement on an optical clock transition in tailored atom arrays.
arXiv Detail & Related papers (2020-04-13T17:54:22Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.