Optimal Floquet Engineering for Large Scale Atom Interferometers
- URL: http://arxiv.org/abs/2403.14337v1
- Date: Thu, 21 Mar 2024 12:05:58 GMT
- Title: Optimal Floquet Engineering for Large Scale Atom Interferometers
- Authors: T. Rodzinka, E. Dionis, L. Calmels, S. Beldjoudi, A. Béguin, D. Guéry-Odelin, B. Allard, D. Sugny, A. Gauguet,
- Abstract summary: We present a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.
We demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils between its two arms.
Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils ($600\hbar k$) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.
Related papers
- Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer [0.4941383238872373]
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities.
We apply this method to a resonant atom interferometer and achieve thousand-fold phase amplification, representing a fifty-fold improvement over the performance observed without optimized control.
We anticipate our findings will significantly benefit the performance of matter-wave interferometers for a variety of applications, including dark matter, dark energy, and gravitational wave detection.
arXiv Detail & Related papers (2024-07-15T21:19:52Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Quantum enhanced SU(1,1) matter wave interferometry in a ring cavity [0.0]
We numerically explore a novel method for performing SU (1,1) interferometry beyond the standard quantum limit.
Timescales of the interferometer operation are here given by the inverse of photonic frequency, and are orders of magnitude shorter than the timescales of collisional spin-mixing based interferometers.
arXiv Detail & Related papers (2023-09-22T16:23:19Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - A large-momentum-transfer matter-wave interferometer to measure the
effect of gravity on positronium [0.0]
A Mach-Zehnder matter-wave interferometer has been designed to operate with single-photon transitions.
Within less than one year, the acquisition time is sufficient to achieve a 10% accuracy level in measuring positronium gravitational acceleration.
arXiv Detail & Related papers (2023-03-21T12:29:33Z) - Enhancing strontium clock atom interferometry using quantum optimal
control [0.09786690381850353]
We study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses.
This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve scientific goals.
arXiv Detail & Related papers (2022-07-26T23:56:33Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.