論文の概要: What do Models Learn From Training on More Than Text? Measuring Visual
Commonsense Knowledge
- arxiv url: http://arxiv.org/abs/2205.07065v1
- Date: Sat, 14 May 2022 13:37:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-19 03:31:11.731540
- Title: What do Models Learn From Training on More Than Text? Measuring Visual
Commonsense Knowledge
- Title(参考訳): モデルはテキスト以上のトレーニングから何を学ぶのか?
視覚常識知識の測定
- Authors: Lovisa Hagstr\"om and Richard Johansson
- Abstract要約: 言語モデルにおける視覚的コモンセンス知識を測定するための2つの評価タスクを提案する。
視覚的コモンセンスの知識は、視覚的テキストデータに基づいて訓練されたマルチモーダルモデルと非モーダルベースラインモデルとでは大きな違いはない。
- 参考スコア(独自算出の注目度): 0.13706331473063876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are limitations in learning language from text alone. Therefore, recent
focus has been on developing multimodal models. However, few benchmarks exist
that can measure what language models learn about language from multimodal
training. We hypothesize that training on a visual modality should improve on
the visual commonsense knowledge in language models. Therefore, we introduce
two evaluation tasks for measuring visual commonsense knowledge in language
models and use them to evaluate different multimodal models and unimodal
baselines. Primarily, we find that the visual commonsense knowledge is not
significantly different between the multimodal models and unimodal baseline
models trained on visual text data.
- Abstract(参考訳): テキストのみから言語を学ぶには制限がある。
そのため、近年はマルチモーダルモデルの開発に焦点が当てられている。
しかし、マルチモーダルトレーニングから言語について学習する言語モデルを測定できるベンチマークは少ない。
視覚モダリティのトレーニングは、言語モデルの視覚コモンセンス知識を改善するべきだと仮定する。
そこで我々は,言語モデルにおける視覚的コモンセンス知識を測定するための2つの評価タスクを導入し,異なるマルチモーダルモデルと非モーダルベースラインを評価する。
視覚的コモンセンスの知識は、視覚的テキストデータに基づいて訓練されたマルチモーダルモデルと非モーダルベースラインモデルとは大きく異なるものではない。
関連論文リスト
- The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
多言語モデルにおける言語表現について検討する。
我々は、コミュニティ中心のモデルが、低リソース言語で同じ家系の言語を区別する上で、より良い性能を発揮することを実験から観察した。
論文 参考訳(メタデータ) (2023-10-20T02:26:34Z) - VLIS: Unimodal Language Models Guide Multimodal Language Generation [23.094728230459125]
VLIS(Importance Smpling weights)として視覚言語モデルを導入する。
視覚言語モデルの視覚的条件付け能力と、追加のトレーニングを伴わずに、アンモダルテキストのみの言語モデルの言語理解を組み合わせる。
VLISは、常識理解や複雑なテキスト生成など、様々なタスクにおける視覚言語モデルを改善する。
論文 参考訳(メタデータ) (2023-10-15T07:58:52Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPMは、英語以外の言語で大規模なマルチモーダルモデルを訓練するための効果的な訓練パラダイムである。
画像・テキスト・テキスト・画像生成における大規模なマルチモーダルモデルVisCPMを構築し,中国語の最先端(オープンソース)性能を実現する。
論文 参考訳(メタデータ) (2023-08-23T09:55:41Z) - Images in Language Space: Exploring the Suitability of Large Language
Models for Vision & Language Tasks [17.97052348690598]
大規模言語モデルは、ゼロショットまたは少数ショット学習パラダイムを使用して、様々な言語タスクで堅牢なパフォーマンスを示す。
入力としてイメージを付加的に処理できるマルチモーダルモデルは、言語のみのモデルでサイズと一般性に追いつかない。
異なる言語モデルを用いて言語モデルに視覚情報をアクセスできるようにする。
論文 参考訳(メタデータ) (2023-05-23T07:50:36Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - Large-scale Bilingual Language-Image Contrastive Learning [17.19890778916312]
我々は11億枚の画像テキストペア(韓国語7800万、英語476万)を集め、KELIPという名前のバイリンガル・マルチモーダルモデルを訓練します。
我々は,MAE事前学習やマルチクロップ強化など,シンプルで効果的なトレーニング手法を導入する。
実験により、そのようなトレーニングスキームで訓練されたモデルは、両方の言語で競合する性能を示すことが示された。
論文 参考訳(メタデータ) (2022-03-28T03:02:03Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
我々は,言語トークンを関連画像に文脈的にマッピングすることで,言語のみのデータに対するマルチモーダルアライメントを補間する手法を開発した。
語彙化」は比較的小さな画像キャプションデータセットに基づいて訓練され、それを大規模言語コーパスのための語彙生成に適用する。
これらの文脈的に生成された語彙を用いて学習し、視覚的に制御された言語モデルにより、複数の純粋言語タスクにおいて、自己教師による代替よりも一貫した改善が示される。
論文 参考訳(メタデータ) (2020-10-14T02:11:51Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。