論文の概要: Differentiable SAR Renderer and SAR Target Reconstruction
- arxiv url: http://arxiv.org/abs/2205.07099v1
- Date: Sat, 14 May 2022 17:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 17:38:01.080092
- Title: Differentiable SAR Renderer and SAR Target Reconstruction
- Title(参考訳): 微分型SARレンダラーとSARターゲット再構成
- Authors: Shilei Fu, Feng Xu
- Abstract要約: SARイメージング機構のマッピングと投影を再構成する微分可能SAR(DSR)を開発した。
SAR画像からの3次元逆ターゲット再構成アルゴリズムを考案した。
- 参考スコア(独自算出の注目度): 7.840247953745616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forward modeling of wave scattering and radar imaging mechanisms is the key
to information extraction from synthetic aperture radar (SAR) images. Like
inverse graphics in optical domain, an inherently-integrated forward-inverse
approach would be promising for SAR advanced information retrieval and target
reconstruction. This paper presents such an attempt to the inverse graphics for
SAR imagery. A differentiable SAR renderer (DSR) is developed which
reformulates the mapping and projection algorithm of SAR imaging mechanism in
the differentiable form of probability maps. First-order gradients of the
proposed DSR are then analytically derived which can be back-propagated from
rendered image/silhouette to the target geometry and scattering attributes. A
3D inverse target reconstruction algorithm from SAR images is devised. Several
simulation and reconstruction experiments are conducted, including targets with
and without background, using both synthesized data or real measured inverse
SAR (ISAR) data by ground radar. Results demonstrate the efficacy of the
proposed DSR and its inverse approach.
- Abstract(参考訳): 合成開口レーダ(SAR)画像から情報抽出を行う鍵は,波動散乱とレーダイメージング機構の前方モデリングである。
光領域における逆グラフィックスと同様に、本質的に統合された前方逆アプローチは、SARの高度な情報検索とターゲット再構成に有望である。
本稿では,SAR画像の逆画像化の試みについて述べる。
sarイメージング機構のマッピングと投影アルゴリズムを確率写像の微分可能な形式に再構成する微分可能sarレンダラ(dsr)を開発した。
提案したDSRの1次勾配は解析的に導出され、描画された画像/シルエットからターゲット形状と散乱特性へ逆伝播することができる。
SAR画像からの3次元逆ターゲット再構成アルゴリズムを考案した。
地中レーダによる合成データと実測逆SAR(Real measured inverse SAR)データの両方を用いて、背景のないターゲットを含むいくつかのシミュレーションおよび再構成実験を行った。
提案するdsrの有効性と逆手法の有効性を実証する。
関連論文リスト
- Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与する。
その結果,解釈可能性が大きく向上し,EO画像に精通したアナリストがSARデータにアクセスしやすくなった。
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与し,データ解釈を向上するための新しいツールを提供する。
論文 参考訳(メタデータ) (2024-09-07T14:31:46Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - SAR-AE-SFP: SAR Imagery Adversarial Example in Real Physics domain with
Target Scattering Feature Parameters [2.3930545422544856]
現在のSAR画像の逆例生成法は、画像逆例として知られる2次元デジタルドメインで動作する。
本稿では,SAR-AE-SFP-Attackを提案する。
実験結果から,SAR-AE-SFPアタックはCNNモデルやTransformerモデルに対する攻撃効率を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-03-02T13:52:28Z) - Learning Surface Scattering Parameters From SAR Images Using
Differentiable Ray Tracing [8.19502673278742]
本稿では,スペキュラとディフューズの両方を包括的に考慮した表面マイクロ波レンダリングモデルを提案する。
CSVBSDF表面散乱パラメータ学習のためのSAR画像に基づく微分可能レイトレーシング(DRT)エンジンを構築した。
提案手法の有効性はシミュレーションと実SAR画像との比較により検証されている。
論文 参考訳(メタデータ) (2024-01-02T12:09:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - SAR-NeRF: Neural Radiance Fields for Synthetic Aperture Radar Multi-View
Representation [7.907504142396784]
本研究では、SARイメージング機構とニューラルネットワークを組み合わせることで、SAR画像生成のための新しいNeRFモデルを提案する。
SAR-NeRFは、ボクセルの減衰係数と散乱強度の分布を学習するために構築される。
その結果,SAR-NeRFオーグメンテーションデータセットは,数ショットの学習設定でSARターゲット分類性能を大幅に向上できることがわかった。
論文 参考訳(メタデータ) (2023-07-11T07:37:56Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
近接場合成開口レーダ(SAR)は、ターゲットの散乱分布ホットスポットの高解像度画像を提供する。
一方、撮像の結果は、サイドローブ、クラッタ、ノイズから必然的に劣化する。
イメージを復元するために、現在の手法では、例えば、点拡散関数(PSF)は空間的に一貫したものであり、ターゲットはスパース点散乱器などで構成されている。
我々は、分解モデルを空間的に可変な複素畳み込みモデルに再構成し、近接場SARのシステム応答を考慮した。
モデルに基づくディープラーニングネットワークは、復元するために設計されている
論文 参考訳(メタデータ) (2022-11-28T01:28:33Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Structure-Preserving Image Super-Resolution [94.16949589128296]
単一画像超解像(SISR)の構造
近年の研究では、フォトリアリスティック画像の復元によるSISRの開発が進められている。
しかし、回収された画像にはいまだ望ましくない構造歪みがある。
論文 参考訳(メタデータ) (2021-09-26T08:48:27Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
単一画像超解像(SISR)の構造
最近のGAN(Generative Adversarial Network)による研究は、SISRの開発を促進している。
しかし、復元された画像には常に望ましくない構造歪みがある。
論文 参考訳(メタデータ) (2020-03-29T17:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。