論文の概要: Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1
- arxiv url: http://arxiv.org/abs/2408.15678v2
- Date: Thu, 29 Aug 2024 09:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 12:30:07.671622
- Title: Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1
- Title(参考訳): 偏光SAR画像のための深層学習に基づくスペックルフィルタ -センチネル-1への応用-
- Authors: Alejandro Mestre-Quereda, Juan M. Lopez-Sanchez,
- Abstract要約: 本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
- 参考スコア(独自算出の注目度): 51.404644401997736
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Speckle suppression in synthetic aperture radar (SAR) images is a key processing step which continues to be a research topic. A wide variety of methods, using either spatially-based approaches or transform-based strategies, have been developed and have shown to provide outstanding results. However, recent advances in deep learning techniques and their application to SAR image despeckling have been demonstrated to offer state-of-the-art results. Unfortunately, they have been mostly applied to single-polarimetric images. The extension of a deep learning-based approach for speckle removal to polarimetric SAR (PolSAR) images is complicated because of the complex nature of the measured covariance matrices for every image pixel, the properties of which must be preserved during filtering. In this work, we propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network. The methodology includes a reversible transformation of the original complex covariance matrix to obtain a set of real-valued intensity bands which are fed to the neural network. In addition, the proposed method includes a change detection strategy to avoid the neural network to learn erroneous features in areas strongly affected by temporal changes, so that the network only learns the underlying speckle component present in the data. The method is implemented and tested with dual-polarimetric images acquired by Sentinel-1. Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation. More importantly, it is also shown that the neural network is not generating artifacts or introducing bias in the filtered images, making them suitable for further polarimetric processing and exploitation.
- Abstract(参考訳): 合成開口レーダ(SAR)画像におけるスペックル抑制は、研究トピックであり続けている重要な処理ステップである。
空間的アプローチや変換的戦略を用いた多種多様な手法が開発され,優れた結果が得られた。
しかし,近年の深層学習技術の進歩とSAR画像復号化への応用は,最先端の成果をもたらすことを実証している。
残念ながら、それらは主に単偏光画像に適用されている。
偏光SAR(PolSAR)画像へのスペックル除去のための深層学習に基づくアプローチの拡張は、画像画素毎に測定された共分散行列の複雑な性質のため複雑であり、その特性はフィルタリング中に保存されなければならない。
本研究では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
この手法は、元の複素共分散行列の可逆変換を含み、ニューラルネットワークに供給される実数値強度帯域の集合を得る。
さらに、提案手法は、ニューラルネットワークが時間的変化に強く影響された領域における誤った特徴を学習するのを避けるための変更検出戦略を含むので、ネットワークは、データに存在する基盤となるスペックル成分のみを学習する。
この手法は、Sentinel-1によって取得された双対偏光画像を用いて実装され、試験される。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
さらに重要なのは、ニューラルネットワークがアーティファクトを生成したり、フィルタされた画像にバイアスを導入していないことを示し、さらなる偏光処理やエクスプロイトに適していることである。
関連論文リスト
- PolMERLIN: Self-Supervised Polarimetric Complex SAR Image Despeckling
with Masked Networks [2.580765958706854]
脱スペックリングは合成開口レーダ(SAR)画像の品質向上に重要なノイズ低減タスクである。
既存の方法は単一偏光画像のみを扱うため、現代の衛星が捉えた多重偏光画像は扱えない。
本稿では,分極関係を利用したチャネルマスキング手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T07:06:36Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
本手法は,異常を周囲から逸脱する異常パターンとみなすが,その特徴を事前に把握していない。
提案手法は自己教師付きアルゴリズムを用いてこれらの問題に対処することを目的としている。
従来のReed-Xiaoliアルゴリズムと比較して,提案手法の利点を示す実験を行った。
論文 参考訳(メタデータ) (2022-10-28T10:22:29Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-12T03:29:14Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
本稿では, サース・トゥ・ファインス・スパース・トランス (CST) を用いた新しいトランス方式を提案する。
HSI再構成のための深層学習にHSI空間を埋め込んだCST
特に,CSTは,提案したスペクトル認識スクリーニング機構(SASM)を粗いパッチ選択に使用し,選択したパッチを,細かなピクセルクラスタリングと自己相似性キャプチャのために,カスタマイズしたスペクトル集約ハッシュ型マルチヘッド自己アテンション(SAH-MSA)に入力する。
論文 参考訳(メタデータ) (2022-03-09T16:17:47Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
本稿では,SAR画像復号化のためのトランスフォーマーネットワークを提案する。
提案する非特定ネットワークは、トランスフォーマーベースのエンコーダにより、異なる画像領域間のグローバルな依存関係を学習することができる。
実験により,提案手法は従来型および畳み込み型ニューラルネットワークに基づく解法よりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2022-01-23T20:09:01Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
合成開口レーダ(SAR)画像から小さな領域変化検出のための頑健な教師なし手法を提案する。
差分画像(DI)を生成するマルチスケールスーパーピクセル再構成法を開発した。
二段階中心拘束型ファジィc平均クラスタリングアルゴリズムを提案し、DIの画素を変化・変化・中間クラスに分割する。
論文 参考訳(メタデータ) (2020-11-22T12:50:08Z) - SAR Image Despeckling by Deep Neural Networks: from a pre-trained model
to an end-to-end training strategy [8.097773654147105]
畳み込みニューラルネットワーク(CNN)は、最近、SAR画像復元の最先端のパフォーマンスに達することが示されている。
CNNトレーニングには、多くのスペックルフリー/スペックル故障した画像のペアという、優れたトレーニングデータが必要です。
本稿では,実施したいスペックル除去作業に応じて,採用可能なさまざまな戦略を解析する。
論文 参考訳(メタデータ) (2020-06-28T09:47:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。