Practical Insights of Repairing Model Problems on Image Classification
- URL: http://arxiv.org/abs/2205.07116v1
- Date: Sat, 14 May 2022 19:28:55 GMT
- Title: Practical Insights of Repairing Model Problems on Image Classification
- Authors: Akihito Yoshii, Susumu Tokumoto, Fuyuki Ishikawa
- Abstract summary: Additional training of a deep learning model can cause negative effects on the results, turning an initially positive sample into a negative one (degradation)
In this talk, we will present implications derived from a comparison of methods for reducing degradation.
The results imply that a practitioner should care about better method continuously considering dataset availability and life cycle of an AI system.
- Score: 3.2932371462787513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Additional training of a deep learning model can cause negative effects on
the results, turning an initially positive sample into a negative one
(degradation). Such degradation is possible in real-world use cases due to the
diversity of sample characteristics. That is, a set of samples is a mixture of
critical ones which should not be missed and less important ones. Therefore, we
cannot understand the performance by accuracy alone. While existing research
aims to prevent a model degradation, insights into the related methods are
needed to grasp their benefits and limitations. In this talk, we will present
implications derived from a comparison of methods for reducing degradation.
Especially, we formulated use cases for industrial settings in terms of
arrangements of a data set. The results imply that a practitioner should care
about better method continuously considering dataset availability and life
cycle of an AI system because of a trade-off between accuracy and preventing
degradation.
Related papers
- Rethinking negative sampling in content-based news recommendation [1.5416095780642964]
News recommender systems are hindered by the brief lifespan of articles, as they undergo rapid relevance decay.
Recent studies have demonstrated the potential of content-based neural techniques in tackling this problem.
In this study, we posit that the careful sampling of negative examples has a big impact on the model's outcome.
arXiv Detail & Related papers (2024-11-13T15:42:13Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - Undersmoothing Causal Estimators with Generative Trees [0.0]
Inferring individualised treatment effects from observational data can unlock the potential for targeted interventions.
It is, however, hard to infer these effects from observational data.
In this paper, we explore a novel generative tree based approach that tackles model misspecification directly.
arXiv Detail & Related papers (2022-03-16T11:59:38Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
We study how many negative samples are optimal for InfoNCE in different scenarios via a semi-quantitative theoretical framework.
We estimate the optimal negative sampling ratio using the $K$ value that maximizes the training effectiveness function.
arXiv Detail & Related papers (2021-05-27T08:38:29Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
Dropout has been demonstrated as a simple and effective module to regularize the training process of deep neural networks.
We propose contextual dropout with an efficient structural design as a simple and scalable sample-dependent dropout module.
Our experimental results show that the proposed method outperforms baseline methods in terms of both accuracy and quality of uncertainty estimation.
arXiv Detail & Related papers (2021-03-06T19:30:32Z) - Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted
Data [4.725669222165439]
We propose a new probabilistic method for unsupervised recovery of corrupted data.
Given a large ensemble of degraded samples, our method recovers accurate posteriors of clean values.
We test our model in a data recovery task under the common setting of missing values and noise.
arXiv Detail & Related papers (2020-06-30T16:18:16Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
State-of-the-art methods for causal inference don't consider missing values.
Missing data require an adapted unconfoundedness hypothesis.
Latent confounders whose distribution is learned through variational autoencoders adapted to missing values are considered.
arXiv Detail & Related papers (2020-02-25T12:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.