Efficient lifting of symmetry breaking constraints for complex
combinatorial problems
- URL: http://arxiv.org/abs/2205.07129v1
- Date: Sat, 14 May 2022 20:42:13 GMT
- Title: Efficient lifting of symmetry breaking constraints for complex
combinatorial problems
- Authors: Alice Tarzariol and Martin Gebser and Mark Law and Konstantin
Schekotihin
- Abstract summary: This work extends the learning framework and implementation of a model-based approach for Answer Set Programming.
In particular, we incorporate a new conflict analysis algorithm in the Inductive Logic Programming system ILASP.
- Score: 9.156939957189502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many industrial applications require finding solutions to challenging
combinatorial problems. Efficient elimination of symmetric solution candidates
is one of the key enablers for high-performance solving. However, existing
model-based approaches for symmetry breaking are limited to problems for which
a set of representative and easily-solvable instances is available, which is
often not the case in practical applications. This work extends the learning
framework and implementation of a model-based approach for Answer Set
Programming to overcome these limitations and address challenging problems,
such as the Partner Units Problem. In particular, we incorporate a new conflict
analysis algorithm in the Inductive Logic Programming system ILASP, redefine
the learning task, and suggest a new example generation method to scale up the
approach. The experiments conducted for different kinds of Partner Units
Problem instances demonstrate the applicability of our approach and the
computational benefits due to the first-order constraints learned.
Related papers
- Metaheuristics for the Template Design Problem: Encoding, Symmetry and Hybridisation [0.0]
The template design problem (TDP) is a hard problem with a high number of symmetries which makes solving it more complicated.
This paper explores and analyses a wide range of metaheuristics to tackle the problem with the aim of assessing their suitability for finding template designs.
arXiv Detail & Related papers (2024-11-05T06:29:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Conjunctive Query Based Constraint Solving For Feature Model
Configuration [79.14348940034351]
We show how to apply conjunctive queries to solve constraint satisfaction problems.
This approach allows the application of a wide-spread database technology to solve configuration tasks.
arXiv Detail & Related papers (2023-04-26T10:08:07Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming [0.0]
We introduce a new model-oriented Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints.
After targeting simple problems, we aim to extend our method to be applied also for advanced decision problems.
arXiv Detail & Related papers (2022-08-05T10:50:03Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis.
We show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies.
arXiv Detail & Related papers (2022-05-10T15:54:06Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
We introduce a new model-oriented approach for Answer Set Programming that lifts the Symmetry Breaking Constraints into a set of interpretable first-order constraints.
Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs.
arXiv Detail & Related papers (2021-12-22T11:27:48Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
Two major questions in designing discretization-based algorithms are how to create the discretization and when to refine it.
We provide a unified theoretical analysis of tree-based hierarchical partitioning methods for online reinforcement learning.
Our algorithms are easily adapted to operating constraints, and our theory provides explicit bounds across each of the three facets.
arXiv Detail & Related papers (2021-10-29T15:06:15Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.