論文の概要: Proxyless Neural Architecture Adaptation for Supervised Learning and
Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2205.07168v1
- Date: Sun, 15 May 2022 02:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 14:21:31.191512
- Title: Proxyless Neural Architecture Adaptation for Supervised Learning and
Self-Supervised Learning
- Title(参考訳): 教師付き学習と自己監督学習のためのプロキシレスニューラルネットワーク適応
- Authors: Do-Guk Kim, Heung-Chang Lee
- Abstract要約: 本稿では、再現性と効率のよいプロキシレスニューラルアーキテクチャ適応を提案する。
本手法は,教師付き学習と自己教師型学習の両方に適用できる。
- 参考スコア(独自算出の注目度): 3.766702945560518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Neural Architecture Search (NAS) methods have been introduced and
show impressive performance on many benchmarks. Among those NAS studies, Neural
Architecture Transformer (NAT) aims to adapt the given neural architecture to
improve performance while maintaining computational costs. However, NAT lacks
reproducibility and it requires an additional architecture adaptation process
before network weight training. In this paper, we propose proxyless neural
architecture adaptation that is reproducible and efficient. Our method can be
applied to both supervised learning and self-supervised learning. The proposed
method shows stable performance on various architectures. Extensive
reproducibility experiments on two datasets, i.e., CIFAR-10 and Tiny Imagenet,
present that the proposed method definitely outperforms NAT and is applicable
to other models and datasets.
- Abstract(参考訳): 最近、Neural Architecture Search (NAS)メソッドが導入され、多くのベンチマークで印象的なパフォーマンスを示している。
これらのnas研究の中で、neural architecture transformer(nat)は、計算コストを維持しながら、与えられたニューラルアーキテクチャをパフォーマンス向上に適応させることを目的としている。
しかし、NATは再現性に欠けており、ネットワークウェイトトレーニングの前に追加のアーキテクチャ適応プロセスが必要である。
本稿では,再現可能かつ効率的なプロキシレスニューラルネットワーク適応法を提案する。
本手法は,教師付き学習と自己教師付き学習の両方に適用できる。
提案手法は,各種アーキテクチャ上での安定した性能を示す。
CIFAR-10とTiny Imagenetの2つのデータセットに対する大規模な再現性実験により、提案手法はNATよりも確実に優れ、他のモデルやデータセットにも適用可能であることが示された。
関連論文リスト
- DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
我々は、RNNアーキテクチャのトレーニング性能を予測する、隠れ共分散と呼ばれる新しいトレーニングフリーメトリックを開発した。
トランスフォーマーアーキテクチャの現在の検索空間パラダイムは、トレーニング不要なニューラルアーキテクチャサーチに最適化されていない。
論文 参考訳(メタデータ) (2023-06-01T02:06:13Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
本稿では,SERモデルの自動構成にニューラルアーキテクチャサーチ(NAS)技術を適用することを提案する。
NASはモデルパラメータサイズを維持しながらSER性能(54.89%から56.28%)を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-31T10:16:10Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
概念拡張ニューラルアーキテクチャサーチ(CENAS)という手法を提案する。
サンプル効率が高く、計算的創造性にインスパイアされたトランスファーラーニングアプローチとニューラルアーキテクチャサーチを組み合わせたものだ。
新しいモデルのパラメータを近似するために、既存の重みを転送することで、素早いアーキテクチャ探索よりも高速なモデルを見つける。
論文 参考訳(メタデータ) (2021-10-07T02:29:26Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Differentiable Neural Architecture Transformation for Reproducible
Architecture Improvement [3.766702945560518]
再現可能で効率のよい、微分可能なニューラルアーキテクチャ変換を提案する。
CIFAR-10とTiny Imagenetの2つのデータセットに対する大規模な実験により、提案手法はNATよりも確実に優れていることが示された。
論文 参考訳(メタデータ) (2020-06-15T09:03:48Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。